期刊文献+

基于K-means聚类的热计量用户负荷特性及行为节能分析 被引量:5

K-means Clustering Based Analysis of Load Characteristics and Behavioral Energy Saving of Heat Metering Users
下载PDF
导出
摘要 采暖建筑进行热计量改造后,用户可以根据热需求进行室内温度控制和调节,由于用户设定室内温度不同,从而形成不同的热负荷特性。根据热计量用户用热负荷作为分析依据,通过采集热用户室内温度、设定温度、耗热量、开启及断开时间等数据,采用K-means算法对数据进行聚类,以此获取热计量用户负荷特性。利用聚类结果及居住位置对热用户的行为节能进行分析,得出不同居住位置用户室温、设定温度以及热负荷规律,为用户按需用热、热力公司按需供热提供参考,为合理地开展采暖建筑节能起到促进作用。 After the heating building is retrofitted by heat metering,the user can perform indoor temperature control and adjustment according to the heat demand. Because the user sets the indoor temperature differently,different heat load characteristics are formed. According to the heat metering user’s thermal load as the analysis basis,through the collection of hot user indoor temperature,set temperature,heat consumption,turn on and off time and other data,using K-means algorithm to cluster the data,in order to obtain heat metering User load characteristics. The clustering results and living positions are applied to analyze the behavioral energy saving of hot users,the user’s room temperature,set temperature,and heat load law of different residential locations are obtained,which provides reference for users on-demand heating and heating company’s on-demand heating,and is reasonable to promote heating energy efficiency in buildings to play a catalytic role.
作者 马文辉 王智金 MA Wen-hui;WANG Zhi-jin(Xingtai City Heating Company,Xingtai 054000,Hebei,China)
机构地区 邢台市热力公司
出处 《建筑节能》 CAS 2019年第5期31-34,共4页 BUILDING ENERGY EFFICIENCY
关键词 热计量 K-MEANS聚类 负荷特性 室内温度 行为节能 heat metering K-means clustering load characteristics indoor temperature energy saving behavior
  • 相关文献

参考文献5

二级参考文献27

  • 1冯国民.分户供暖系统户间传热问题的探讨[J].科学技术与工程,2004,4(10):878-879. 被引量:4
  • 2黄维.热计量试点研究的问题探讨[J].中国建设信息(供热制冷),2004(6):15-19. 被引量:1
  • 3张锡虎.供热计量若干深层次问题[J].建设科技,2005(10):18-19. 被引量:2
  • 4马莉,罗阳.分户计量供热系统中的邻室传热问题分析[J].核工程研究与设计,2006(4):48-51. 被引量:1
  • 5[7]GB 50176-93,民用建筑热工设计规范[S].(GB 50176-93,Design Code for Civil Thermal Engineering of Construction[S].)
  • 6Radiator thermostats RTC/RTD[M]. Danfoss data sheets, 2001.
  • 7Kaufman L,Rousseeuw P J.Finding Groups in Data:An Introduction to Cluster Analysis[M].New York,USA:John Wiley & Sons,1990.
  • 8Wang Kaijun.Cluster Validation Toolbox for Estimating the Number of Clusters[Z].[2007-05-01].http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.do?objectType=author&objectId=1095267.
  • 9Dimitriadou E,Dolnicar S,Weingessel A.An Examination of Indexes for Determiining the Number of Cluster in Binary Data Sets[J].Psychometrika,2002,67(1):137-160.
  • 10Ben-Hur A,Elisseeff A,Guyon I A.Stability Based Method for Discovering Structure in Clustered Data[C]//Proc.of Pacific Symposium on Biocomputing.Hawaii,USA:[s.n.],2002.

共引文献336

同被引文献49

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部