期刊文献+

基于分层稀疏编码的轴承剩余寿命预测方法 被引量:8

A RUL prediction approach for rolling bearing based on hierarchical sparse coding
下载PDF
导出
摘要 剩余寿命预测技术是装备智能维护与智能制造的关键技术。滚动轴承作为旋转机械装备关键零/部件之一,对其进行剩余寿命预测具有重要工程与实际意义,因此提出一种基于分层稀疏编码的滚动轴承剩余寿命预测方法。该方法作为深度学习模型的一种,克服了传统机器学习模型需要大量训练、标签学习以及鲁棒性差的缺点,有效提高了轴承剩余寿命预测精度。实验结果表明该方法具有更高的预测精度和更好的鲁棒性。 Remaining Useful Life(RUL) prediction is very important for intelligent maintenance of equipment and intelligent manufacturing.Roller bearings are among the most frequently used components in the majority of rotating machines,thus RUL prediction of roller bearing is also very significant for practical applications.A novel RUL prediction approach is proposed for roller bearing based on Hierarchical Sparse Coding(HSC).HSC is one of deep learning techniques and it overcomes the shortcomings of traditional machine learning models which require trainings,labels and have poor robustness.This proposed method can effectively improve RUL prediction accuracy of roller bearings.Experimental validation are conducted to well demonstrate its accuracy and robustness.
作者 李华新 王衍学 Li Huaxin;Wang Yanxue(School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004,China;Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处 《现代制造工程》 CSCD 北大核心 2019年第5期7-12,共6页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(61463010,51475098) 广西自然科学杰出青年基金项目(2016GXNSFFA380008) 广西高校海外“百人计划”项目 广西高水平创新团队及“卓越学者”计划项目
关键词 滚动轴承 分层稀疏编码 剩余寿命预测 深度学习 roller bearing hierarchical sparse coding remaining useful life deep learning
  • 相关文献

参考文献4

二级参考文献133

共引文献206

同被引文献43

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部