摘要
针对传统的室内WiFi定位方法难以解决大型活动及区域间流动人群轨迹分析需要这一问题,提出了基于三边测量定位和信号强度(RSSI)的应用于大型场馆、复杂环境下的人群定位新方法,实现区域内人员定位、区域内外人群划分、区域内人群流量分析。使用基于一种概率统计预测算法进行人群轨迹预测,建立了WiFi区域内人群轨迹模型,通过进一步建立的跨区域人群移动轨迹模型,实现大跨度区域间人群流动分析。通过搭建WiFi区域人群轨迹模型验证系统,使用2016年贵阳数博会数据,进行了数据可视化分析,证明了模型的有效性。
The existing indoor WiFi positioning methods are difficult to resolve the need of crowd trajectory analysis in the large-scale activities and inter-regional. Aiming at this problem, a new crowd location method based on trilateration measurement and signal strength indication (RSSI) for large-scale venues and complex environments is proposed. Crowd positioning in the region, crowd division inside and outside the region, and crowd flow analysis in the region can be achieved. A prediction algorithm based on probability and statistics is used to predict crowd trajectories. A crowd trajectory model in WiFi area is established. A cross regional crowd mobility trajectory model is further established to analyse the flow of crowd in large area inter regional. A proving system of WiFi regional crowd trajectory model is established. Using the data of 2016 Guiyang International Big Data Expo, data visualization analysis is carried out. In this way, the validity of the model is proved.
作者
徐洋
孙建忠
黄磊
谢晓尧
XU Yang;SUN Jian-zhong;HUANG Lei;XIE Xiao-yao(Key Laboratory of Information and Computing Science of Guizhou Province,Guizhou Normal University,Guiyang 550001,Guizhou,China;Guizhou Normal University-Guiyang Public Security Bureau Joint Research Centre for Information Security,Guiyang 550001,Guizhou,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2019年第5期8-20,共13页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金重点项目[61332019]
中央引导地方科技发展专项资金项目[黔科中引地20184008]
贵州省科技合作计划重点项目[黔科合LH字20157763]
住房和城乡建设部科学技术计划项目[2016-K3-009]
全国统计科学研究项目[2016LY81]
关键词
WiFi定位
人群轨迹
三边测量定位
信号强度
位置指纹
WiFi positioning
crowd trajectory
trilateration
received signal strength indication
location fingerprint