期刊文献+

Interchain doubly-bridged α-helical peptides for the development of protein binders

Interchain doubly-bridged α-helical peptides for the development of protein binders
原文传递
导出
摘要 Constrained peptide scaffolds that are tolerant to extensive sequence manipulation and amenable to bioactive peptide design are of great value to the development of novel protein binders and peptide therapeutics. In this work, we reported strategies for the design and synthesis of a kind of novel interchain doubly-bridged α-helical peptides, involving mutual stabilization of two peptide α-helices linked by two interchain bisthioether crosslinkers. By taking a MDM2-binding peptide with an α-helical tendency as a model, we demonstrated that α-helical dimers with significantly improved structural and proteolytic stability and nanomolar binding affinity to the target protein can be obtained. By modulating the surface charges on the dimeric peptides, we also obtained a dimeric peptide with enhanced cellpenetrating capability, which can efficiently penetrate into cancer cells and inhibit the intracellular MDM2-p53 interactions to promote cell apoptosis. Considering that many proteins take a surface α-helical segment as the binding motif to mediate their interactions with other proteins, we believe that our interchain doubly-bridged α-helical peptides would provide a promising scaffold for the development of novel high-affinity protein binders. Constrained peptide scaffolds that are tolerant to extensive sequence manipulation and amenable to bioactive peptide design are of great value to the development of novel protein binders and peptide therapeutics. In this work, we reported strategies for the design and synthesis of a kind of novel interchain doubly-bridged α-helical peptides, involving mutual stabilization of two peptide α-helices linked by two interchain bisthioether crosslinkers. By taking a MDM2-binding peptide with an α-helical tendency as a model, we demonstrated that α-helical dimers with significantly improved structural and proteolytic stability and nanomolar binding affinity to the target protein can be obtained. By modulating the surface charges on the dimeric peptides, we also obtained a dimeric peptide with enhanced cellpenetrating capability, which can efficiently penetrate into cancer cells and inhibit the intracellular MDM2-p53 interactions to promote cell apoptosis. Considering that many proteins take a surface α-helical segment as the binding motif to mediate their interactions with other proteins, we believe that our interchain doubly-bridged α-helical peptides would provide a promising scaffold for the development of novel high-affinity protein binders.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第4期924-928,共5页 中国化学快报(英文版)
基金 financial support from the National Natural Science Foundation of China (Nos. 21675132 and 21822404) the Program for Changjiang Scholars and Innovative Research Team in University (No. 13036) the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521004)
关键词 PEPTIDES α-Helices PROTEIN binders Bisthioether crosslinkers MDM2-P53 INTERACTIONS Peptides α-Helices Protein binders Bisthioether crosslinkers MDM2-p53 interactions
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部