摘要
针对传统MCL算法定位精度低的不足,提出了一种基于距离估计的改进蒙特卡罗定位算法—DEMCL.首先根据网络连通度、锚节点信息和节点间的相邻关系估计目标节点与锚节点间的距离;然后利用该距离构建新的过滤条件加入算法的过滤阶段,以优化样本集和减小定位误差;最后以Matlab为工具对算法的定位性能进行仿真和分析.仿真结果表明:在同一环境下,与MCL算法和MCB算法相比,DEMCL算法能保证更高的定位精度,同时减少了无效定位的节点数目,网络覆盖率可达到98.83%.
Aiming at the disadvantage of low positioning accuracy of traditional Monte Carlo Localization method (MCL) algorithm, this paper proposes an improved Monte Carlo Localization algorithm?DEMCL, which is based on distance estimation. First, the estimation distance between the unknown nodes and anchor nodes is calculated based on the network connectivity, anchor node information and adjacent relationship of nodes. Then, a new filter condition is added to the filtering phase of the algorithm to optimize the sample set and reduce positioning errors. And the end of the article, Matlab is used to simulate and analyze the performance of the algorithm. The simulation results show that in the same environment, compared with the MCL algorithm and the MCB algorithm, the DEMCL algorithm can ensure higher positioning accuracy, while reducing the number of invalidly located nodes, the network coverage can reach 98.83%.
作者
王灵矫
梁雅媚
郭华
WANG Ling-jiao;LIANG Ya-mei;GUO Hua(School of Information Engineering,Xiangtan University,Xiangtan 411105,China;Key Laboratory of Intelligent Computing &Information Processing of Ministry of Education,Xiangtan University,Xiangtan 411105,China)
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期476-483,共8页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金(61402391)
关键词
无线传感器网络
移动节点定位
蒙特卡罗算法
距离估计
wireless sensor network
location of mobile nodes
Monte Carlo algorithm
distance estimation