期刊文献+

基于粒子群算法的PID控制器参数优化 被引量:30

Particle Swarm Optimization Based PID Controller Parameter Optimization
下载PDF
导出
摘要 粒子群算法是一种智能算法,在PID控制器参数整定的应用中可取得更优的效果。为解决传统的粒子群算法早熟收敛和收敛速度慢的缺点,文中采用了一种基于相似度动态调整惯性权重的方法,即越靠近目前最优粒子的个体被赋予越小的惯性权重值。最后用MATLAB对等温连续搅拌釜反应器仿真。与标准的PSO算法整定方法相比,改进的粒子群算法稳定时间为230.1s,比传统粒子群算法524.7s的稳定时间缩小了一半,表明改进的算法对PID控制器的参数优化有着较优的收敛效果。 Particle swarm optimization is an intelligent algorithm that can achieve better results in the application of PID controller parameter tuning. In order to solve the shortcomings of the premature convergence and slow convergence of the traditional particle swarm optimization algorithm, this paper adopted a method of dynamically adjusting the inertia weight based on the similarity, that was, the closer to the current optimal particle, the smaller the inertia weight value was assigned. Finally, MATLAB was used to simulate the isothermal continuous stirred tank reactor. Compared with the standard PSO tuning method, the improved particle swarm algorithm had a settling time of 230.1 s, which was half the stability time of the conventional particle swarm optimization algorithm of 524.7 s, indicating that the improved algorithm had better parameters optimization for the PID controller.
作者 杜美君 张伟 谢亚莲 DU Meijun;ZHANG Wei;XIE Yalian(School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science andTechnology,Shanghai 200093,China)
出处 《电子科技》 2019年第6期7-11,共5页 Electronic Science and Technology
基金 国家自然科学基金青年基金(11502145)~~
关键词 改进PSO算法 PID控制器 参数整定 相似度 惯性权重 搅拌釜反应器 仿真 improved PSO algorithm PID controller parameter setting similarity inertia weight stirred tank reactor simulation
  • 相关文献

参考文献10

二级参考文献73

共引文献91

同被引文献276

引证文献30

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部