期刊文献+

一阶Rytov近似有限频走时层析 被引量:4

Wave equation traveltime tomography using Rytov approximation
下载PDF
导出
摘要 传统的波动方程走时核函数(或走时Fréchet导数)多基于互相关时差测量方式及地震波场的一阶Born近似导出,其成立条件非常苛刻.然而,地震波走时与大尺度的速度结构具有良好的线性关系,对于小角度的前向散射波场,Rytov近似优于Born近似.因此,本文基于Rytov近似和互相关时差测量方式,导出了基于Rytov近似的有限频走时敏感度核函数的两种等价形式:频率积分和时间积分表达式.在此基础之上,本文提出了一种隐式矩阵向量乘方法,可以直接计算Hessian矩阵或者核函数与向量的乘积,而无需显式计算和存储核函数及Hessian矩阵.基于隐式矩阵向量乘方法,本文利用共轭梯度法求解法方程实现了一种高效的Gauss-Newton反演算法求解走时层析反问题.与传统的敏感度核函数反演方法相比,本文方法在每次迭代过程中,无需显式计算和存储核函数,极大降低了存储需求.与基于Born近似的伴随状态方法走时层析相比,本文方法具有准二阶的收敛速度,且适用范围更广.数值试验证明了本文方法的有效性. The conventional wave-equation traveltime sensitivity kernel (TSK) or traveltime Fréchet derivative is derived from the Born approximation and cross-correlation measurement,which has a very narrow valid condition.In fact,the seismic traveltime has a more linear relationship with the large-scale velocity structure.For small-angle forward scattered wavefield,Rytov approximation is proved to be superior to Born approximation.Based on the Rytov approximation and cross-correlation measurement,a new wave-equation traveltime sensitivity kernel is derived.Meanwhile,an implicit matrix-vector product method is proposed,which can directly calculate the product of a matrix (TSK) and a model-space vector as well as the product of a matrix transpose and a data-space vector,eliminating the need of calculating TSK explicitly.Based on the proposed implicit matrix-vector product method,traveltime tomography using the Gauss-Newton inversion algorithm is implemented efficiently by solving the normal equation iteratively using a conjugate gradient method.Compared with the conventional TSK method,the proposed inversion strategy is free of TSK calculation and storage,making it more practical for large-scale problem.Compared with the adjoint traveltime tomography,the proposed method has a quasi-second-order convergent rate and a broader valid condition.Numerical examples demonstrate the effectiveness of the proposed method.
作者 冯波 罗飞 王华忠 FENG Bo;LUO Fei;WANG HuaZhong(Wave Phenomena and Intelligent Inversion Imaging Group (WPI),School of Ocean and Earth Science,Tongji University,Shanghai 200092,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第6期2217-2226,共10页 Chinese Journal of Geophysics
基金 国家自然科学基金(41774126,41574098,41604091,41704111) 国家科技重大专项(2016ZX05024-001,2016ZX05006-002)资助
关键词 Rytov近似 有限频走时敏感度核函数 波动方程走时层析 初至波 隐式矩阵向量乘 Gauss-Newton方法 Rytov approximation Finite-frequency traveltime sensitivity kernel Wave-equation traveltime tomography First-arrival Implicit matrix-vector product Gauss-Newton method
  • 相关文献

参考文献3

二级参考文献60

  • 1刘福田,曲克信,吴华,李强,刘建华,胡戈.中国大陆及其邻近地区的地震层析成象[J].地球物理学报,1989,32(3):281-291. 被引量:107
  • 2Bishop T N,Bube K P,Cutler R T,et al.Tomographic determination of velocity and depth in lateral varying media.Geophysics,1985,50(4):903-923.
  • 3Harlan W S.Tomographic estimation of shear velocities from shallow cross-well seismic data.63th Ann.Internat.Mtg.,Soc.of Expl.Geophys,1990.86-89.
  • 4Yl-Yahya K.Velocity analysis by iterative profile migration.Geophysics,1989,54(6):718-729.
  • 5Liu Z,Bleistein N.Migration velocity analysis:Theory and an iterative algorithm.Geophysics,1995,60:142-153.
  • 6Billette F,Lambare G.Velocity macro-model estimation from seismic reflection data by stereo-tomography.Geophys.J.Int.,1998,135(2):671-680.
  • 7Zhu X H,Sixta D P,Angstman B G.Tomostatics:Turning-ray tomography+static corrections.The Leading Edge,1992,11:15-23.
  • 8Liu Y Z,Dong L G.Regularizations in first arrival tomography.13th European Meeting of Environmental and Engineering Geophysics,Istanbul,Turkey,2007.
  • 9Vasco D W,Majer E L.Wavepath traveltime tomography.Geophys.J.Int.,1993,115:1055-1069.
  • 10Marquering H,Dahlen F A,Nolet G.Three-dimensional sensitivity kernels for finite-frequency traveltimes:the banana-doughnut paradox.Geophys.J.Int.,1999,137:805-815.

共引文献47

同被引文献13

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部