期刊文献+

卷积神经网络特征在遥感图像配准中的应用 被引量:9

Application of convolutional neural network feature to remote sensing image registration
下载PDF
导出
摘要 遥感图像配准是许多遥感应用的重要步骤之一。卷积神经网络(convolutional neural network,CNN)提取的图像高层特征在图像分类和检索问题上表现优异,能够克服低层配准特征的表达能力有限、容易受到干扰等问题。因此对利用CNN特征进行遥感图像配准开展研究。首先,针对遥感图像配准问题,对CNN中的全连接层特征和不同聚合大小的卷积层特征进行了研究;然后,对利用CNN特征进行图像配准的方法进行了分析;最后,将CNN特征与尺度不变特征变换(scale-invariant feature transform,SIFT)特征在图像的旋转角度、缩放倍数和亮度依次变换时的配准性能进行了对比分析。实验结果表明,在匹配精度和正确对应点的数量方面,CNN特征比SIFT方法具有更好的匹配性能;对变换后的图像而言,微调后的CNN特征比SIFT特征具有更强的鲁棒性。 Successful remote sensing image registration is one of the foundations of many remote sensing applications.Image high-lever features extracted by convolutional neural network (CNN) have achieved excellent performance in image classification and retrieval,and can be used to solve some problems of low-lever image registration features,such as the limitation of expression capability and easily being interfered.Hence,in this paper,the authors investigated the problem as to how to use CNN feature for remote sensing image registration.First,the authors investigated different CNN features from fully connected layers and aggregating convolutional features with different sizes from convolutional layer to register remote sensing image.Then the authors introduced the procedure by using CNN feature for image registration.Finally,the authors compared the registration performances of CNN features and scale-invariant feature transform (SIFT) features after the transformation of the image's perspective,brightness and scale,respectively.The experimental results show that the CNN feature has better matching performance than the SIFT method in terms of matching accuracy and correct number of corresponding points.The finely tuned CNN feature has stronger robustness to the transformed image than the SIFT feature.
作者 叶发茂 罗威 苏燕飞 赵旭青 肖慧 闵卫东 YE Famao;LUO Wei;SU Yanfei;ZHAO Xuqing;XIAO Hui;MIN Weidong(School of Information Engineering,Nanchang University,Nanchang,330031,China)
出处 《国土资源遥感》 CSCD 北大核心 2019年第2期32-37,共6页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目“基于人工禁忌免疫原理的多源遥感图像自动配准研究”(编号:41261091) “基于多变量自然场景统计和局部均值估计的无参考立体图像质量评价”(编号:61662044) “单摄像机在复杂背景下基于行为特征模型的摔倒检测研究”(编号:61762061) 江西省自然科学基金项目“在复杂背景下基于单摄像机的摔倒检测的关键技术研究”(编号:20161ACB20004)共同资助
关键词 卷积神经网络 遥感图像配准 聚合卷积特征 尺度不变特征变换(SIFT) convolutional neural network remote sensing image registration aggregating convolutional features scale-invariant feature transform (SIFT)
  • 相关文献

参考文献5

二级参考文献29

  • 1鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 2李德仁,宁晓刚.一种新的基于内容遥感图像检索的图像分块策略[J].武汉大学学报(信息科学版),2006,31(8):659-662. 被引量:16
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4吕金健.基于特征的多源遥感图像配准技术研究[D].长沙:国防科技大学电子科学与工程学院,2008.
  • 5Lowe D G. Object Recognition from Local Scale In- variant Features [C]. International Conference on Computer Vision, Corfu, Greece, 1999.
  • 6Lowe D G. Distinctive Image Features from Scale invariant Keypoints [J] International Journal o{ Computer Vision, 2004, 60(2): 91-110.
  • 7Mikolajczyk K, Schmid C. A Performance Evalua- tion of Local Descriptors [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2005, 27(10) :1 615-1 630.
  • 8Sedaghat A, Mokhtarzade M, Ebadi H. Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (11) : 4 516-4 527.
  • 9Li Qiaoliang, Wang Guoyou, Liu Jianguo. Robust Scale-Invariant Feature Matching for Remote Sens- ing Image Registration[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 287-291.
  • 10李芳芳,肖本林,贾永红,毛星亮.SIFT算法优化及其用于遥感影像自动配准[J].武汉大学学报(信息科学版),2009,34(10):1245-1249. 被引量:61

共引文献254

同被引文献59

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部