摘要
为提升传统算法对高分辨率遥感图像中地物目标的检测效果,将深度学习目标检测框架快速区域卷积神经网络(faster regions with convolutional neural network,Faster R-CNN)应用于高分辨率遥感图像目标检测任务中。以机场为检测场景、飞机为检测目标进行实验,首先,利用高分辨率遥感图像数据集训练Faster R-CNN框架,得到相应的目标检测模型;然后,采用该模型对高分辨率遥感图像中的飞机目标进行检测;最后,对实验结果进行统计分析及评价。实验结果表明,Faster R-CNN模型能够全面而准确地检测飞机目标,最优 F1分数值为0.976 3,并且同一个模型可以对多种高分辨率遥感图像进行目标检测。
In order to improve the detection effect of the traditional algorithm on the ground objects in high resolution remote sensing images,this paper applies the deep learning object detection framework Faster R-CNN to the object detection task of high resolution remote sensing images.The airport and aircraft are used as the test scene and detection object for the experiment respectively,The Faster R-CNN framework is trained using the high-resolution remote sensing image data set to obtain the corresponding object detection model.The model is used to detect aircraft objects in high resolution remote sensing images and perform statistical analysis of the experimental results.The experimental results show that the Faster R-CNN model can entirely and accurately detect aircraft objects with an optimal F1 score of 0.976 3,and the same model can be used for object detection of multiple high resolution remote sensing images.
作者
谢奇芳
姚国清
张猛
XIE Qifang;YAO Guoqing;ZHANG Meng(Institute of Information Engineering,China University of Geosciences (Beijing),Beijing 100083,China)
出处
《国土资源遥感》
CSCD
北大核心
2019年第2期38-43,共6页
Remote Sensing for Land & Resources