期刊文献+

基于Faster R-CNN的高分辨率图像目标检测技术 被引量:15

Research on high resolution image object detection technology based on Faster R-CNN
下载PDF
导出
摘要 为提升传统算法对高分辨率遥感图像中地物目标的检测效果,将深度学习目标检测框架快速区域卷积神经网络(faster regions with convolutional neural network,Faster R-CNN)应用于高分辨率遥感图像目标检测任务中。以机场为检测场景、飞机为检测目标进行实验,首先,利用高分辨率遥感图像数据集训练Faster R-CNN框架,得到相应的目标检测模型;然后,采用该模型对高分辨率遥感图像中的飞机目标进行检测;最后,对实验结果进行统计分析及评价。实验结果表明,Faster R-CNN模型能够全面而准确地检测飞机目标,最优 F1分数值为0.976 3,并且同一个模型可以对多种高分辨率遥感图像进行目标检测。 In order to improve the detection effect of the traditional algorithm on the ground objects in high resolution remote sensing images,this paper applies the deep learning object detection framework Faster R-CNN to the object detection task of high resolution remote sensing images.The airport and aircraft are used as the test scene and detection object for the experiment respectively,The Faster R-CNN framework is trained using the high-resolution remote sensing image data set to obtain the corresponding object detection model.The model is used to detect aircraft objects in high resolution remote sensing images and perform statistical analysis of the experimental results.The experimental results show that the Faster R-CNN model can entirely and accurately detect aircraft objects with an optimal F1 score of 0.976 3,and the same model can be used for object detection of multiple high resolution remote sensing images.
作者 谢奇芳 姚国清 张猛 XIE Qifang;YAO Guoqing;ZHANG Meng(Institute of Information Engineering,China University of Geosciences (Beijing),Beijing 100083,China)
出处 《国土资源遥感》 CSCD 北大核心 2019年第2期38-43,共6页 Remote Sensing for Land & Resources
关键词 目标检测 FasterR-CNN 卷积神经网络 高分辨率遥感图像 object detection Faster R-CNN convolution neural network high resolution remote sensing image
  • 相关文献

参考文献5

二级参考文献92

  • 1徐胜荣,李忠兴.自然景物中桥梁目标识别方法的研究[J].浙江大学学报(自然科学版),1995,29(3):275-281. 被引量:18
  • 2李宗华,王新洲,彭明军,邹双朝.高分辨率卫星遥感影像在土地利用变更调查中的应用[J].测绘信息与工程,2005,30(4):13-16. 被引量:29
  • 3丁晓英.eCognition在土地利用项目中的应用[J].测绘与空间地理信息,2005,28(6):116-117. 被引量:23
  • 4侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 5万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 6Claus B. Towards fully automatic generation of city models [ A ]. In: International Archives of Photogrammetry and Remote Sensing [ C ]. Amsterdam: XIX. 2000.
  • 7Jong-Hyeok JEONG, Masataka TAKAGI. Extraction Of Bridge Positions From Ikonos Images For Accuracy Control of Bridge Database [EB/OL]. http: //www. gisdevelopment. net/aars/acrs/2002/vhr/172. pdf
  • 8Roger Trias-Sanz,Nicolas Loménie.Automatic bridge detection in high-resolution satellite images.In J.L.Crowley et al.,editors,Proc.of the 3rd Int.Conf.on Computer Vision Systems (ICVS 03),volume 2626 of Lecture Notes in Computer Science,Graz,Austria,April 2003:172-181.
  • 9Thomas M,Lillesand,Ralph W.Kiefer等著.遥感与图像解译(第四版)[M].北京:电子工业出版社,2003.
  • 10Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.

共引文献647

同被引文献109

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部