期刊文献+

基于优化RBF网络的抽油机故障诊断方法研究 被引量:2

Research on Fault Diagnosis Method of Pumping Unit Based on Optimized RBF Network
下载PDF
导出
摘要 本文介绍了RBF神经网络结构和原理,针对RBF神经网络在抽油机故障诊断中核函数参数的局限性,使用K-Means算法优化RBF网络中心参数,使用动态参数的PSO算法优化RNF网络权值和宽度参数,建立PSO-RBF神经网络。最后将PSO-RBF神经网络与RBF神经网络应用于抽油机故障诊断,证明了优化后的PSO-RBF神经网络在计算速度和诊断准确率上更加优秀。 This paper introduces the structure and principle of RBF neural network.In order to limit the kernel function parameters of RBF neural network in pumping unit fault diagnosis,K-Means algorithm is used to optimize RBF network center parameters,and dynamic parameter PSO algorithm is used to optimize RNF network.The weight and width parameters are used to establish the PSO-RBF neural network.Finally,the PSO-RBF neural network and RBF neural network are applied to the pumping unit fault diagnosis,which proves that the optimized PSO-RBF neural network is superior in calculation speed and diagnostic accuracy.
作者 徐通 何鹏飞 刘娜娜 王睿杰 Xu Tong;He Pengfei;Liu Nana;Wang Ruijie(Xi’an Shiyou University,Mechanical Engineering Research Institute,Xi’an 710065,China)
出处 《广东化工》 CAS 2019年第9期3-5,共3页 Guangdong Chemical Industry
关键词 RBF神经网络 K-Means++算法 PSO算法 抽油机故障诊断 RBF neural network K-Means++ algorithm PSO algorithm pumping unit fault diagnosis
  • 相关文献

参考文献5

二级参考文献16

  • 1Shi Y.,Eherhart R.C.Fuzzy Adaptive particle swarm optimization. Proc of the Congress on Evolutionary Computation . 2001
  • 2Zhang W.,Liu Y,Clerc M.An adaptive PSO algorithm for eactive power optimization. Proc.6th Int.Conf.Advances in Power System Control,Operation and Management . 2003
  • 3Eberhart RC,Shi Y.Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary Computation . 2001
  • 4Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the 1995 IEEE International Conference on Neural Networks . 1995
  • 5Shi Y,Eberhart RC.A modified particle swarm optimizer. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation . 1998
  • 6Clerc M,Kennedy J.The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation . 2002
  • 7Kennedy J,Eberhart RC,Shi Y.Swarm intelligence. . 2001
  • 8阳春华,谷丽姗,桂卫华.自适应变异的粒子群优化算法[J].计算机工程,2008,34(16):188-190. 被引量:51
  • 9任子晖,王坚.一种动态改变惯性权重的自适应粒子群算法[J].计算机科学,2009,36(2):227-229. 被引量:50
  • 10李峰,唐和生,薛松涛,王勇,陈镕.粒子群优化算法在桁架优化设计中的应用[J].土木建筑与环境工程,2009,31(1):7-12. 被引量:16

共引文献68

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部