期刊文献+

线性分数自排斥扩散的收敛性

Convergence of the linear fractional self-repelling diffusion
下载PDF
导出
摘要 考察了由分数布朗运动驱动的线性自排斥扩散过程的收敛性:Xt^H=Bt^H+a∫0t∫0s(Xs^H-Xu^H)duds+vt,X0^H=0,其中BH是Hurst指数为H>1/2的分数布朗运动,a>0,v∈R是已知的常数。证明了其解在特定的收敛速度下以概率1与L^2(Ω)收敛于一个随机变量。 In this paper,we investigated the asymptotic behavior of the linear self-repelling diffusion driven by fractional Brownian motion. Xt^H=Bt^H+a∫0t∫0s(Xs^H-Xu^H)duds+vt,X0^H=0,where BH is fractional Brownian motion with Hurst index H>1/2,a>0,v∈R are two constants. te^1/2at^2 Xt^H is proved to converge to a normal random variable as t(t→+∞) almost surely and in L2(Ω).
作者 李洪伟 葛勇 闫理坦 LI Hongwei;GE Yong;YAN Litan(College of Science,Donghua University,Shanghai 201620,China)
机构地区 东华大学理学院
出处 《苏州科技大学学报(自然科学版)》 CAS 2019年第2期32-35,46,共5页 Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11571071)
关键词 分数布朗运动 线性自排斥过程 以概率1收敛 均方收敛 fractional Brownian motion linear self-repelling diffusion process convergence with probability one convergence in square mean
  • 相关文献

参考文献2

二级参考文献12

  • 1Durrett R, Rogers L C G. Asymptotic behavior of Brownian polymer[J]. Prob Theory Rel Fields, 1991,92:337-349.
  • 2Pemantle R. Random Processes with Reinforcement[M]. Ph D Dissertation :Massachussets Institute of Technology, 1988:1-160.
  • 3Pemantle R. Phase transition in reinforced random walk and RWRE on trees[J]. Ann Probab, 1988,16:1229-1241.
  • 4Kusuoka S. Asymptotics of Polymers Measures in one Dimension[M]. Boston :Pitman, 1985.
  • 5Olivier R. Self-attracting diffusions : Case of the constant interaction[J]. Probab Theory Relat Fields, 1997,107 : 177-196.
  • 6Herrmann S, Roynette B. Boundedness and convergence of some self-attracting diffusions[J]. Math Ann, 2003,325:81-96.
  • 7Herrmanna S, Scheutzow M. Rate of convergence of some self-attracting diffusions[J]. Stoc Proc Appl, 2004,111:41-55.
  • 8Mountford T,Tarres P. An asymptotic result for Brownian polymers[J]. Ann I H P, 2008,44:29-46.
  • 9Yan L,Sun Y ,Lu Y. On the linear fractional self-attracting diffusion[J]. J Theort Probab ,2008,21:502-516.
  • 10Chakravarti N,Sebastian K L. Fractional Brownian motion model for polymers[J]. Chem Phys Lett, 1997,267:9-13.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部