摘要
考察了由分数布朗运动驱动的线性自排斥扩散过程的收敛性:Xt^H=Bt^H+a∫0t∫0s(Xs^H-Xu^H)duds+vt,X0^H=0,其中BH是Hurst指数为H>1/2的分数布朗运动,a>0,v∈R是已知的常数。证明了其解在特定的收敛速度下以概率1与L^2(Ω)收敛于一个随机变量。
In this paper,we investigated the asymptotic behavior of the linear self-repelling diffusion driven by fractional Brownian motion. Xt^H=Bt^H+a∫0t∫0s(Xs^H-Xu^H)duds+vt,X0^H=0,where BH is fractional Brownian motion with Hurst index H>1/2,a>0,v∈R are two constants. te^1/2at^2 Xt^H is proved to converge to a normal random variable as t(t→+∞) almost surely and in L2(Ω).
作者
李洪伟
葛勇
闫理坦
LI Hongwei;GE Yong;YAN Litan(College of Science,Donghua University,Shanghai 201620,China)
出处
《苏州科技大学学报(自然科学版)》
CAS
2019年第2期32-35,46,共5页
Journal of Suzhou University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11571071)
关键词
分数布朗运动
线性自排斥过程
以概率1收敛
均方收敛
fractional Brownian motion
linear self-repelling diffusion process
convergence with probability one
convergence in square mean