期刊文献+

基于MPC的I/O约束容错控制数值化设计方法 被引量:1

MPC Based Numerical Method for Fault-tolerant Control with I/O Constraints
下载PDF
导出
摘要 针对一类离散系统的传感器故障,研究同时具有控制输入幅值及变化率约束、可测输出幅值约束下的主动容错控制问题。借鉴预测控制策略和多约束优化算法,仅利用故障传感器输出信号和控制输入信号,以及状态估计滤波器,通过构建二次型优化目标的多约束凸优化算法模型,在线递推计算容错控制输入信号,得到了一种基于MPC策略的数值化容错控制设计方法。通过改进现有MPC稳定性结果的不足,证明了闭环故障容错系统的渐近稳定性,且具有给定的I/O操作约束和优化的二次型性能。最后,通过对某汽车电子节气门的容错控制仿真实验,验证了该方法的有效性。 For the sensor fault case of a class of discrete-time systems, the active fault-tolerant control is investigated in consideration of the control input and its rate constraints, as well as the measured output constraint. Based on the model-based predictive control(MPC) method and the constrained optimization algorithm, the design of the fault-tolerant controller is converted into the development of constrained convex optimization with the quadratic objective function. The fault-tolerant control input is then calculated online in recursive way by using the control input in the past time, the faulty sensor output and state estimation filter.Thus, a numerical fault-tolerant control method is derived based on the MPC strategy. The asymptotical stability of the closed-loop system is proved by improving the existing results in MPC. The input-output(I/O)constraints and the minimized quadratic performance are also guaranteed. Finally, simulations on the fault-tolerant control of an electronic throttle show the validity of the proposed method.
作者 张登峰 张慎鹏 王执铨 ZHANG Deng-feng;ZHANG Shen-peng;WANG Zhi-quan(School of Mechanical Engineering Nanjing University of Science and Technology, Nanjing 210094,China;School of Automation, Nanjing University of Science and Technology, Nanjing 210094,China)
出处 《控制工程》 CSCD 北大核心 2019年第5期971-977,共7页 Control Engineering of China
基金 国家自然科学基金(61374133 51275245 61673205) 江苏省重点研发计划项目(BE2015125 BY2016004-06) 江苏省科技成果转化项目(BA2016155)
关键词 容错控制 输入输出约束 预测控制 二次型规划 Fault-tolerant control input-output constraints MPC quadratic programming
  • 相关文献

参考文献1

二级参考文献12

  • 1SONTAG E D. Input to State Stability: Basic Concepts and Result[M]//Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2005.
  • 2MAGEE D P, BOOK W J. The application of input shaping to a system with varying parameters[C]//Its Manipulation Strategies for Massive Space Payloads. Atlanta: Georgia Institute of Technology, 1992:519 - 525.
  • 3SINGER N C, SEERING W E Preshaping command inputs to reduce system vibration[J]. ASME Journal of Dynamic Systems, Measurement and Control. 1990, 23(3): 76 - 82.
  • 4OGATA K. Modern Control Engineering[M]. 4th ed. New Jersey: Prentice Hall, 2001.
  • 5HASSAN K K. Nonlinear System[M]. 3rd ed. New York: Macmillan Publishing Company, 1992.
  • 6CHANG Y. Model-based analysis and tuning of electronic throttle controllers[C] //2004 Society of Automotive Engineers World Congress. Detroit, Michigan: SAE International, 2004.
  • 7HASHIMOTO E, TETSUYA I, YASUI Y, et al. High reliability electronic throttle system design[C]//2003 Society of Automotive Engineers World Congress. Detroit, Michigan: SAE International, 2003.
  • 8YUAN X F, WANG Y N. A novel electronic-throttle-valve controller based on approximate model method[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 883 - 890.
  • 9VASAK M, BAOTIC M, MORARI M. Constrained optimal control of an electronic throttle[J]. International Journal of Control, 2006, 79(5): 465 - 478.
  • 10TAN Y L, CHANG J, TAN H L. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties[J]. IEEE Transactions on Industrial Electronics(S0278-O046), 2003, 50(5): 944 - 952.

共引文献31

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部