摘要
深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示,具有强大的学习和高效的特征表达能力,成为人工智能领域的研究热点,近年来发展十分迅猛。首先介绍了深度学习的特点及其与浅层学习的区别,并详细介绍了深度学习的国内外发展现状和典型的深度学习网络模型,重点介绍了深度学习技术中一些关键环节处理方法。
Deep learning can form high-level representation of attribute categoriesor characteristics through combine low-level features, in order to find the distributed characteristic data, it has the strong learning and efficient feature expression ability, and it becomes a research focus in the field of artificial intelligence and developes very rapidly in recent years. The characteristics of deep learning and its difference from shallow learning are introduced at first. The development status and typical deep learning network models of deep learning are introduced in detail, and finally some key links in deep learning technology are introduced.
作者
王敏
周树道
杨忠
刘展华
任尚书
WANG Min;ZHOU Shu-dao;YANG Zhong;LIU Zhan-hua;REN Shang-shu(School of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing 211169 China;College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101 China;Unit 95171 of PLA, Guangzhou 510000 China)
出处
《自动化技术与应用》
2019年第5期51-57,共7页
Techniques of Automation and Applications
基金
国家自然科学基金(编号41775165)
关键词
深度学习
机器学习
模式识别
特征提取
人工神经网络
deep learning
machine learning
pattern recognition
feature extraction
artificial neural network