摘要
利用函数的泰勒展开及极限的运算性质,借助已知敛散性的级数∑ 1/ n ( ln n) r 和∑ 1 /n( ln n)( ln ln n) r ,推出了判别正项级数敛散性的两个方法,并在此基础上得到了通项递减的正项级数敛散性的两个判别法.文中的结论强于双比值判别法.
In this paper, we improve two criterions for the convergence or divergence of series by comparing to ∑ 1/ n (ln n ) r and ∑ 1 /n (ln n )(lnln n ) r . We also obtain two criterions for positive series with decreasing terms. Our results are better than the double ratio criterion.
作者
李卫平
纪宏伟
LI Weiping;JI Hongwei(Department of Mathematics and Physics,Nantong Normal College,Nantong 226010,China)
出处
《高等数学研究》
2019年第3期21-25,28,共6页
Studies in College Mathematics
基金
江苏省教育厅高校“青蓝工程”(2018)资助项目阶段性成果