期刊文献+

基于改进的三维卷积神经网络的高光谱遥感影像分类技术研究 被引量:6

Research on hyperspectral remote sensing image classification based on 3D convolutional neural network
下载PDF
导出
摘要 高光谱遥感影像数据具有多样化的光谱信息和空间信息,然而传统的高光谱影像分类只是针对目标的光谱特征进行处理。基于三维空间滤波操作可以作为一种简单高效的提取高光谱影像光谱和空间特征的方式,基于此提出一种改进的三维卷积神经网络框架以实现更加准确的高光谱遥感影像分类。利用高光谱遥感影像数据立方体有效地提取光谱-空间组合特征,而不依赖于任何预处理或后期处理。另外,与其他传统的基于深度学习的方法相比,该方法去除了池化层,从而达到所需参数更少,模型规模更小,更容易训练的效果。将该方法与其他基于深度学习的高光谱遥感影像分类方法进行了比较,并使用两个真实场景的高光谱遥感影像数据集作为测试。实验结果表明,该方法在地物分类准确度方面较传统的基于深度学习的高光谱遥感影像分类方法取得了更好的分类效果。 Hyperspectral remote sensing image contains both rich spectral and spatial information.However,traditional hyperspectral image classification is usually based on spectral features.Based on three-dimensional spatial filtering,it can be used as a simple and effective method to extract spectral spatial features of hyperspectral images.An improved three- dimensional convolutional neural network framework is proposed for accurate hyperspectral remote sensing image classification.The data cube effectively extracts spectral-spatial combination features without relying on any pre-processing or post-processing.In addition,compared to other traditional deep learning-based methods,a smaller model size which requires fewer parameters,and less likelihood of overfitting can be much easier to train.This method is compared with other hyperspectral remote sensing image classification methods based on deep learning,and is tested on two hyperspectral remote sensing image datasets.Compared to traditional deep learning methods,3D-CNN gets better accuracy among the results of hyperspectral images.
作者 赵扬 杨清洁 Zhao Yang;Yang Qingjie(School of Information Science and Technology,University of Scienceand Technology of China,Hefei 230026, China)
出处 《信息技术与网络安全》 2019年第6期46-51,共6页 Information Technology and Network Security
关键词 遥感 高光谱图像分类 深度学习 三维卷积神经网络 remote sensing hyperspectral image classification deeplearning three-dimensional convolutional neural network
  • 相关文献

参考文献5

二级参考文献30

  • 1刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412. 被引量:89
  • 2靳文戟,刘政凯.多类别遥感图像的复合分类方法[J].环境遥感,1995,10(4):298-302. 被引量:17
  • 3蔡晓斌,陈晓玲,王涛,吴忠宜.基于图斑空间关系的遥感专家分类方法研究[J].武汉大学学报(信息科学版),2006,31(4):321-324. 被引量:12
  • 4寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 5Zhao Yongqiang,Zhang Guohua,Jie Feiranet al..Unsupervisedclassification of spectropolarimetric data by region-based evidencefusion[J].IEEE Geoscience and Remote Sensing Letters,2011,8(4):755-759.
  • 6J.Wright,A.Yang,A.Ganeshet al..Robust face recognitionvia sparse representation[J].IEEE Trans.Pattern Analysis andMachine Intelligence,2009,31(2):210-227.
  • 7J.Theiler,K.Gloce.Sparse linear filters for detection andclassification in hyperspectral imagery[C].SPIE,2006,6233:623301.
  • 8Qazi Samiul Haq,Lixin Shi,Linmi Tao et al..A L1-minimization based approach for hyperspectral data classification[C].Proceedings of 2010International Conference on RemoteSensing(ICRS),2010,2:139-142.
  • 9Yi Chen,Nasser M.Nasrabadi,Trac D.Tran.Hyperspectralimage classification using dictionary-based sparse representation[J].IEEE Trans.Geoscience and Remote Sensing,2011,49(10):3973-3985.
  • 10Seung Jean Kim,K.Koh,M.Lustig et al..An interior-pointmethod for large-scale L1-regularized least squares[J].IEEE J.Sel.Top.Signal Processing,2007,1(4):606-617.

共引文献403

同被引文献73

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部