期刊文献+

基于经验模态分解的自适应噪声对消方法

Adaptive Noise Cancellation Method Based on Empirical Mode Decomposition
下载PDF
导出
摘要 针对飞行器试验中单通道遥测信号频率内容丰富、降噪困难的问题,提出了一种基于经验模态分解的自适应噪声对消方法。将信号利用经验模态分解(Empirical modede composition,EMD)方法分解为一系列本征模态函数(Intrinsic Mode Function,IMF),将第一阶IMF作为参考噪声,并将第二阶以后的IMF分量累加求和,作为待降噪信号,在此基础上利用自适应噪声对消系统完成降噪。该方法克服了直接将高阶IMF作为噪声消除后在降噪和细节信息损失之间的矛盾性问题,可以最大程度保护信号细节信息不受损失的情况下实现良好的降噪效果。计算机仿真和某次飞行器试验实测数据处理结果证明了这一方法的有效性。 To solve the difficult problems of the noise suppression of the signle-channle telemetry for its rich frequency in vehicle test, an adaptive noise cancellation method based on empirical mode decomposition is proposed. The signal is decomposed into a series of Intrinsic Mode Functions (IMF) using the empirical mode decomposition (EMD) method. The first-order IMF is used as the reference noise, and the IMF components after the second order are summed as the signal to be noise-suppressed. Based on this, the adaptive noise cancellation system is used to complete the noise suppression. The proposed method overcomes the contradiction between the noise suppression and the loss of details after directly removing the high-order IMFs as noise. A good noise reduction effect can be achieved with maximum protection of signal detail information without loss. Computer simulation and the actual data processing results of an vehicle test show the effectiveness of the proposed method.
作者 肖瑛 董玉华 XIAO Ying;DONG Yu-hua(School of Information and Communication Engineering, Dalian Minzu University,Dalian Liaoning116605,China)
出处 《大连民族大学学报》 2019年第3期230-234,共5页 Journal of Dalian Minzu University
基金 辽宁省自然科学基金项目(20170540198)
关键词 飞行器试验 遥测 噪声对消 EMD vehicle test telemetry noise cancellation EMD
  • 相关文献

参考文献8

二级参考文献59

  • 1吴向荣,周蜜,孙荣凯,马关松,洪峰.关于一种新型角加速度计的研究与应用[J].海军航空工程学院学报,2003,18(6):631-635. 被引量:1
  • 2陆爱珍,林明邦,邹桂根.一种新的精密角加速度计[J].中国惯性技术学报,1991(2):87-92. 被引量:2
  • 3刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:121
  • 4徐洁,丁金婷,江皓.抗交串自适应噪声对消系统的算法实现[J].计算机仿真,2005,22(9):106-108. 被引量:1
  • 5Huang Wentao,Shen Zhen,Steven R. Long,et al. The empirica mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond A,1998,454:903-995.
  • 6NIKIAS C L, SHAO M. Signal Processing with Alpha- Stable Distributions and Applications [ M ]. New York: John Wiley and Sons Inc, 1995.
  • 7吴校生,陈文元.角加速度计发展综述[J].中国惯性技术学报,2007,15(4):458-463. 被引量:21
  • 8Chen W T, Wang Z Z, Xie surface EMG signal based Transactions on Neural H B, et al. Characterization of on fuzzy entropy [ J ]. IEEE Systems and Rehabilitation Engineering, 2007,15 : 266 - 272.
  • 9Costa M, Goldberger A L, Peng C K . Muhiscale entropy analysis of biological signals [ J ]. Physical Review F, 2005, 71:021906.
  • 10Gao X T, Bacry E, Sattar F, et al. Muhiscale contour comer detection based on local natural scale and wavelet transform [ J ]. Image and Vision Computing,2007,25 (6) : 890 - 898.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部