期刊文献+

高分影像城市绿地信息提取及分类方法的研究 被引量:1

Study on Extraction and Classification of Urban Green Space Information Based on GF-1
下载PDF
导出
摘要 遥感手段进行城市绿地信息提取已经成为目前城市规划的主流手段。但由于所提取的绿地信息种类繁多,如何对绿地信息进一步的分类成为了一个新难题。为此,采用面向对象的分类方法,通过对遥感影像进行特征分析,建立了一定的规则,成功的对唐山市绿地信息进行了提取、分类,对进行城市绿地规划具有一定的借鉴价值。 Remote sensing means to extract urban green space information has become the mainstream means of urban planning.However,due to the variety of green space information extracted,how to further classify green space information has become a new problem.To this end,using object-oriented classification method,through the feature analysis of remote sensing image,a certain rule is established,and the green land information of Tangshan City is successfully extracted and classified,which has certain reference value for urban green space planning.
作者 张绪棋 侯金亮 张松浩 Zhang Xuqi;Hou Jinliang;Zhang Songhao(College of Mining Engineering,North China University of Science and Technology)
出处 《现代矿业》 CAS 2019年第5期56-59,共4页 Modern Mining
关键词 遥感技术 城市绿地信息提取 绿地分类 面向对象 Remote sensing technology Urban green space information extraction Classification of green space Object-oriente
  • 相关文献

参考文献8

二级参考文献55

  • 1车生泉,王洪轮.城市绿地研究综述[J].上海交通大学学报(农业科学版),2001,19(3):229-234. 被引量:77
  • 2郑光,田庆久,李明诗.基于ETM+遥感影像的南京市城市绿地的动态监测[J].遥感信息,2005,27(5):22-24. 被引量:14
  • 3陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007,11(2):221-227. 被引量:78
  • 4张学艺,张晓煜,李剑萍,舒志亮,曹宁.我国干旱遥感监测技术方法研究进展[J].气象科技,2007,35(4):574-578. 被引量:14
  • 5TapioF, Sanna K.Expert systemfor gesture recognition interminal'suser interface [J]. Expert Systems withApplications, 2004,26 (2):189-202.
  • 6Suk Heung-Il, Sin Bong-Kee, Lee Seong-Whan. Hand gesturerecognition based on dynamic Bayesian network framework [J].Pattern Recognition, 2010,43 (9): 3059-3072.
  • 7MohamedBK, Francois B. Gesture recognition bylearning localmotionsignatures [C]//IEEEConference onComputer Vision andPattern Recognition, San Francisco, USA, 2010: 2745-2752.
  • 8SuMC. Fuzzy rule-based approach to spatio-temporal hand gesturerecognition [J]. IEEE Transactions on Systems, Man and CyberneticsPart C: Applications and Reviews, 2000,30 (2): 276-281.
  • 9Hasanuzzaman M, Ampornaramveth V, Zhang T, et al.. Realtimevision-based gesture recognition for human robot interaction[C]//IEEEInternational Conference onRobotics andBiomimetics,Shenyang, China, 2004: 413-418.
  • 10Huang C L, Jeng S H. A model-based hand gesture recognitionsystem[J]. Machine Visionand Applications,2001,12(5):243-258.

共引文献69

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部