摘要
针对近空间可变翼飞行器爬升段小翼伸缩和节省燃油消耗等问题,综合考虑飞行器在近空间飞行声速变化、密度变化、地球引力及发动机推力变化等因素对飞行爬升轨迹的影响,结合可变翼飞行器小翼可伸缩的优势,研究最省燃油的小翼伸缩爬升轨迹,本文提出一种基于高斯伪谱法的求解策略。利用插值拟合得到飞行器小翼伸缩时的气动数据;将高斯伪谱法和序列二次规划算法相结合,对控制量、状态量、边界条件、路劲约束等问题进行优化求解,得到最省油量爬升轨迹以及小翼的伸缩变化过程。仿真结果表明:该方法对于近空间可变翼飞行器爬升段小翼伸缩具有良好优化效果,可节省大量的燃料供飞行器巡航段使用。
We study winglet climbing trajectory with minimal least fuel consumption and propose a solution based on Gaussian pseudo spectral method by comprehensively considering the influence of factors,such as the changes in the speed of sound, density,gravity,and engine thrust on the flight-climbing trajectory of aircrafts in near-space.We exploit the variable telescopic wing aircraft winglet to solve the problems of winglet expansion and contraction and fuel saving encountered by near-space morphing hypersonic aircraft in the climbing period.We perform the interpolation fitting of the pneumatic telescopic wing aircraft to obtain aerodynamic data.Moreover,we combine the Gauss pseudo spectral method and sequential quadratic programming to solve the problem of quantity control,state variables,boundary condition,and road king constraints.We obtain the climb trajectory and winglet stretching process with the optimal fuel economy.Simulation results show that our method has a good optimization effect on winglet stretching during the climbing flight of near-space morphing hypersonic aircrafts and can provide considerable fuel savings for the cruise section of the aircraft.
作者
徐文萤
江驹
蒋烁莹
郑亚龙
XU Wenying;JIANG Ju;JIANG Shuoying;ZHENG Yalong(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2019年第6期1134-1141,共8页
Journal of Harbin Engineering University
基金
国家自然科学基金项目(61673209,61304223)
航空科学基金项目(2016ZA52009)
一院高校联合创新基金项目(CALT201603)
南京航空航天大学研究生创新开放基金项目(kfjj20170306)
关键词
近空间可变翼飞行器
小翼伸缩
高斯伪谱法
非线性规划
序列二次规划算法
最优控制
轨迹优化
near space morphing hypersonic aircraft
winglet stretch
Gaussian pseudo spectral method
nonlinear programming
sequentialquadratic programming algorithm
optimal control
trajectory optimization