期刊文献+

基于改进二维熵-量子遗传算法的图像多阈值变化检测方法 被引量:2

Improved Quantum Genetic Algorithm for Maximization of Two-dimensional Exponent Entropy and Application in SAR Change Detection
下载PDF
导出
摘要 针对二维熵法阈值分割中精度和时间性能较差的问题,提出了基于改进二维熵-量子遗传算法的多阈值图像分割方法。定义了二维阈值量子染色体的编码方式,解决了传统遗传算法优化二维最大指数熵阈值过程中速度慢、多样性小的缺点;在产生阈值解时,提出了半随机策略来代替传统的完全随机策略,加快寻优速度;改进了量子门旋转角度方式,提出了一种新的自适应旋转角度的方法,提高了算法的精度和收敛速度。并进行了分割实验和SAR 图像变化检测实验。结果表明:该方法比基于一维熵的图像分割算法具有更高的抗噪性;其寻优速度较完全随机产生阈值解的量子遗传算法提高了 3 倍~5 倍;避免了算法发散或过早收敛。与其他基于阈值分割的变化检测算法相比,性能更好。 Given the low accuracy and the poor time performance for the images segmentation,an improved two -dimensional exponent entropic quantum genetic algorithm for image threshold segmentation is proposed. Firstly,due to the poor time performance and the low biodiversity of the conventional genetic algorithm for image segmentation,quantum chromosome coding method based on two -dimensional threshold is proposed. Secondly,half -random generating thresholds strategy is put forward to accelerate the searching process. Finally,a new adaptive angle rotation strategy is proposed to improve the segmentation accuracy and convergence rate. The experiments show that the proposed algorithm has better noise immunity,and its searching efficiency is 300 %~ 500 % faster than that using random generating strategy. The improved algorithm can also avoid the divergence and premature convergence. The proposed algorithm can provide an effective solution for SAR change detection.
作者 仝彤 慕晓冬 张力 TONG Tong;MU Xiao-dong;ZHANG Li(Rocket Force Engineering University ,Xi’an 710025,China)
机构地区 火箭军工程大学
出处 《火力与指挥控制》 CSCD 北大核心 2019年第5期48-54,共7页 Fire Control & Command Control
基金 国家自然科学基金资助项目(61640007)
关键词 量子遗传算法 二维指数熵 SAR 变化检测 半随机产生阈值解 quantum genetic algorithm improved two-dimensional exponent entropy SAR change detection half-random generating thresholds
  • 相关文献

参考文献6

二级参考文献58

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2龚坚,李立源,陈维南.二维熵阈值分割的快速算法[J].东南大学学报(自然科学版),1996,26(4):31-36. 被引量:51
  • 3范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 4Otsu N.A threshold selection method from gray-level histograms.IEEE Transactions on Systems,Man,and Cyber.netics,1979,9(1):62-66
  • 5Abutaleb A S.Automation thresholding of gray-level pictures using two-dimensional entropy.Computer Vision Graphics Image Processing,1989,47(1):22-32
  • 6Brink A D.Thresholding of digital images using two dimensional entropies.Pattern Recognition,1992,25(8):803-808
  • 7Gong J,Li L Y,Chen W N.Fast recursive algorithm for twodimensional thresholding.Pattern Recognition,1998,31(3):295-300
  • 8Bazi Y,Bruzzone L,Melgani F.Image thresholding based on the EM algorithm and the generalized Ganssian distribution.Pattern Recognition,2007,40(2):619-634
  • 9Wang S T,Chung F L,Xiong F S.Anovel image thresholding method based on Parzen windowestimate.Pattern Recognition,2008,41(1):117-129
  • 10范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:69

共引文献199

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部