期刊文献+

残差增强的图像描述符 被引量:3

Residual Enhanced Image Descriptor
下载PDF
导出
摘要 针对增大视觉码书在提高图像全局描述符——局部特征聚合描述符(VLAD)精度的同时会增加VLAD存储开销的问题,提出一种基于2层结构层次视觉码书生成残差增强的图像全局描述符EVLAD.离线码书生成阶段,首先通过K-means算法生成第1层视觉码书,然后基于量化残差最小化原则非均匀地生成第2层各视觉子码书.在线EVLAD生成阶段,图像局部特征首先面向细粒度的第2层视觉子码书生成量化残差;然后面向第1层视觉码书进行聚集生成各子向量,EVLAD即为各子向量的串联结果,为了抑制特征空间爆发现象,各子向量和串联结果分别进行了L2归一化.实验结果表明,EVLAD精度优于VLAD和其他各种改进方法. For VLAD, higher search accuracy will be obtained by increasing the size of visual codebook, but more memory usage is entailed. To solve the contradiction between search quality and memory usage, a global image descriptor called EVLAD, aggregating finer residual by use of hierarchical visual codebook with two-layer structure, is proposed. In the offline preprocessing stage, firstly, the first layer visual codebook is learned with K-means in the local descriptor space, and then each visual sub-codebook of the second layer is generated non-uniformly based on the quantization residual minimization criterion. In the online generation stage, the idea of EVLAD is associating the residual generation and accumulation process to different layer visual words, i.e., for a local descriptor, the residual, which is generated by subtracting the second layer nearest visual word from the local descriptor, is summed to a vector corresponding to one of the first layer visual word, and then EVLAD is the concatenation of all vector. In order to suppress the burst phenomena in feature space, L2 -normalization is employed for each subsector and the final concatenation vector. The experimental result shows our EVLAD outperforms VLAD and other modified strategies.
作者 魏本昌 郑丽 管涛 Wei Benchang;Zheng Li;Guan Tao(School of Electrical and Information Engineering,Hubei University of Automotive Technology,Shiyan 442002;School of Computer Science & Technology,Huazhong University of Science and Technology,Wuhan 430074)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第6期1039-1045,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61272202) 湖北汽车工业学院博士基金(BK201603)
关键词 图像描述符 层次视觉码书 L2归一化 积量化 image descriptor hierarchical visual codebook L2-normalization production quantization
  • 相关文献

参考文献3

二级参考文献57

  • 1Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences,and trends of the new age[J]. ACM Computing Surveys, 2008,40(2): Article No.5.
  • 2Chen D M, Girod B. Memory-efficient image databases formobile visual search[J]. IEEE MultiMedia Magazine, 2014,21(1) : 14-23.
  • 3Lowe D G. Distinctive image features from scale-invariantkeypoints[J]. International Journal of Computer Vision, 2004,60(2) : 91-110.
  • 4Chandrasekhar V, Takacs G, Chen D M, et al. Compressed histogramof gradients: a low-bitrate descriptor[J]. InternationalJournal of Computer Vision, 2012, 96(3) : 384-399.
  • 5Bay H, Ess A, Tuytelaars T, van Gool L, et al. SURF: speededup robust features[M] //Lecture Notes in Computer Science.Heidelberg: Springer, 2006, 3951: 404-417.
  • 6Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representationfor local image descriptors[C] //Proceedings of the IEEEInternational Conference on Computer Vision and PatternRecognition. Los Alamitos: IEEE Computer Society Press,2004 : 506-513.
  • 7Morel J M, Yu G S. ASIFT: a new framework for fully affineinvariant image comparison[J]. SIAM Journal on Imaging Sciences,2009, 2(2) : 438-469.
  • 8Zhuang L S, Zhao R, Yu N H, et al. SVD based linear filteringin DCT domain[C] //Proceedings of the 17th IEEE InternationalConference on Image Processing. Los Alamitos: IEEEComputer Society Press, 2010 : 2769-2772.
  • 9Jiang J M, Feng G C. The spatial relationship of DCT coefficientsbetween a block and its sub-blocks[J]. IEEE Transactionson Signal Processing, 2002, 50(5) : 1160-1169.
  • 10Kresch R, Merhav N. Fast DCT domain filtering using the DCTand the DST[J]. IEEE Transactions on Image Processing, 1999,8(6) : 821-833.

共引文献13

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部