期刊文献+

基于混合优化的自适应加速稳健PnP算法 被引量:2

An Adaptive Accelerating Robust PnP Algorithm Based on Hybrid Optimization
下载PDF
导出
摘要 根据目前摄像机位姿估计应用的实时性要求,针对RPnP算法在利用最小二乘误差求解时无法得到唯一解的问题,提出了一种改进自适应加速RPnP算法。在计算误差最小二乘时加入更多的限制条件,确定了输出解的唯一性;随后计算对应的摄像机外参数,代替每个极小值重投影误差的计算和比较过程,节省了大量位姿求解的时间;最后自适应地将原算法和改进后的算法相结合,使得输出结果最优化。实验证明,该方法可以大大降低算法的时间复杂度,并且运行时间受点数影响极小,可以较好地应用于实时性要求高的场景。 In view of the real-time requirement of the application of camera position estimation,and of the defect of the RPnP algorithm that it cannot get a unique solution when using the least square error,an adaptive accelerating RPnP algorithm is proposed.When calculating the error,more constraints are added to the least square,and the uniqueness of the output solution is guaranteed.Afterwards,the corresponding camera parameters are calculated,which are used to replace the calculation and comparison process of each minimum reprojection error,and thus can save a lot of time.Finally,the original algorithm and the improved algorithm are adaptively combined to optimize the output results.The experiment shows that this method can greatly reduce the time complexity of the algorithm,and the running time is hardly influenced by the number of points,which is more adaptable to the scene with high real-time requirement.
作者 凌寒羽 衣晓 王培元 杨卫国 LING Han-yu;YI Xiao;WANG Pei-yuan;YANG Wei-guo(Naval Aviation University,Yantai 264001,China;No.91206 Unit of PLA,Qingdao 266001,China)
出处 《电光与控制》 CSCD 北大核心 2019年第6期54-59,共6页 Electronics Optics & Control
基金 国防科技卓越青年人才基金 泰山学者工程专项经费(ts 201712072)
关键词 摄像机位姿估计 自适应加速RPnP 解的唯一性 时间复杂度 camera position estimation adaptive accelerating RPnP the uniqueness of the output solution time complexity
  • 相关文献

参考文献3

二级参考文献39

  • 1鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:58
  • 2Abdel-Aziz YI, Karara HM. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proc. of the ASP/UI Syrup. on Close-Range Photogrammetry. 1971. 1-18.
  • 3Fiore PD. Efficient linear solution of exterior orientation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(2): 140-148. [doi: 10.1109/34.908965].
  • 4Lepetit V, Moreno-Noguer F, Fual P. EPnP: An accurate O(n) solution to the PnP problem. Int'l Journal of Computer Vision, 2009, 81(2):155-166. [doi: 10.1007/s11263-008-0152-6].
  • 5Ansar A, Daniilidis K. Linear pose estimation from points or lines. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):578-589. [doi: 10.1109/TPAMI.2003.1195992].
  • 6Lu CP, Hager GD, Mjolsness E. Fast and globally convergent pose estimation from video images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(6):610-622. [doi: 10.1109/34.862199].
  • 7Schweighofer G, Pinz A. Globally optimal O(n) solution to the PnP problem for general camera models. In: Proc. of the British Machine Vision Conf. London: BMVA Press, 2008. 1-10.
  • 8Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Combridge University Press, 2000.
  • 9Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981,24(6):381-395. [doi: 10.1145/358669.358692].
  • 10Haralick RM, Lee CN, Ottenberg K, Nolle M. Review and analysis of solutions of the three point perspective pose estimation problem. Int'l Journal of Computer Vision, 1994,13(3):331-356. [doi: 10.1007/BF02028352].

共引文献35

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部