期刊文献+

压电陶瓷驱动平台的复合控制方法研究 被引量:4

On Composite Control Method for Piezoelectric Ceramic Driving Platform
下载PDF
导出
摘要 压电陶瓷驱动平台的迟滞非线性影响其定位精度,并降低原子力显微镜等微纳操纵系统对微纳米尺度样品的扫描成像质量。采用最小二乘法对压电陶瓷驱动平台的迟滞特性进行建模,避免了繁琐的迟滞模型求取过程;提出前馈控制与自抗扰控制相结合的复合控制方法,通过设定扩张观测器的带宽及系统控制带宽达到消除迟滞、提高平台定位精度的目的。实验结果表明,该复合控制方法在保证系统稳定性的前提下能有效地提高系统定位控制精度。 The hysteresis nonlinearity of piezoelectric ceramic driving platform affects its positioning accuracy,and reduces the quality of such micro-nano manipulation systems as atomic force microscopy for scan imaging of micro/nanoscale samples.The hysteresis characteristics of piezoelectric ceramic driving platform are modeled by the least squares method,thus the cumbersome hysteresis model acquisition process is avoided.The composite control method combining feed-forward control with active disturbance rejection control is proposed.By setting the bandwidths of the expansion observer and the system control,the purpose of eliminating hysteresis and improving the positioning accuracy of the platform is achieved.The experimental results show that the composite control method can effectively improve the system positioning control accuracy under the premise of ensuring system stability.
作者 赵庆旭 王一帆 吴文鹏 胡贞 ZHAO Qing-xu;WANG Yi-fan;WU Wen-peng;HU Zhen(Changchun University of Science and Technology,Changchun 130022,China)
机构地区 长春理工大学
出处 《电光与控制》 CSCD 北大核心 2019年第6期80-84,105,共6页 Electronics Optics & Control
基金 吉林省自然科学基金(201554)
关键词 压电陶瓷驱动平台 迟滞 定位精度 自抗扰控制 复合控制 piezoelectric ceramic driving platform hysteresis positioning accuracy active disturbance rejection control composite control
  • 相关文献

参考文献7

二级参考文献42

  • 1张丽敏,郭劲.快速反射镜双X-Y轴控制的仿真研究[J].光学精密工程,2005,13(z1):142-147. 被引量:21
  • 2王伟,易建强,赵冬斌,刘殿通.基于滑模方法的桥式吊车系统的抗摆控制[J].控制与决策,2004,19(9):1013-1016. 被引量:20
  • 3范伟,余晓芬,奚琳.压电陶瓷驱动系统及控制方法研究[J].光学精密工程,2007,15(3):368-371. 被引量:32
  • 4[1]Hwang Chih-Lyang, Jan Chau, Chen Ye-Hwa.Piezomechanies using intelligent variable-structure control [J]. IEEE Trans on Industrial Electronics,2001,48(1):47-59.
  • 5[2]Tao Gang, Kokotovic Petar V. Adaptive control of plant with unknown hysteresis [J]. IEEE Trans on Automatic Control, 1995, 40(2): 200-213
  • 6[3]Krejci P, Kuhnen K. Inverse control of systems with hysteresis and creep[J]. IEE Proc of-Control Theory &Appl,2001, 148(3) :185-192.
  • 7[4]Ge Ping, Jouaneh Musa. Tracking control of piezoceramic actuator [J]. IEEE Trans on Control Systems Technology, 1996,4(3): 209-216.
  • 8[5]Adly A A, Abd-Hafiz S K. Using neural networks in the identification of preisach-type hysteresis models[J].IEEE Trans on Magnetics, 1998, 34(3):629-635,.
  • 9[6]Serpico Claudio, Visone Ciro. Magnetic hysteresis modeling via feed-forward neural networks[J]. IEEE Trans on Magnetics, 1998,34(3) :623-628.
  • 10[7]Wei Jyh-Da, Sun Chuen-Tsai. Construting hysteresis memory in neural networks [J]. IEEE Trans on Systems, Man and Cybernetics. Part B: Cybernetics,2000, 30(4): 601-608.

共引文献29

同被引文献37

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部