摘要
针对工业控制系统由于模型失配或者被控对象特性在运行过程中发生改变造成的控制性能下降问题,设计了基于数据驱动的闭环子空间预测控制策略。将闭环子空间辨识算法与预测控制算法结合起来,直接根据输入输出数据对系统未来输出进行预测,避免了建模不准确所造成误差,提高了控制准确性,且被控对象特性发生改变时,能够及时根据输入输出数据对控制器进行调整,提高了系统的鲁棒性。将其应用于火电机组协调系统,仿真结果表明,相较于基于模型的预测控制和传统的PID控制,该算法能够提高系统的设定值跟踪性能和鲁棒性能。
Taking model mismatch into account,a data-driven closed-loop subspace predictive control strategy was developed.It is a combination of closed loop subspace identification and model predictive control method.It leaves out solve procedure of state space models,and predicts system outputs using input-output data.The method was applied in a coordinated control system(CCS) of a thermal power plant.Simulation results demonstrate its effectiveness and superiority on set-point tracking performance and system robustness.
作者
褚德海
张婷
董泽
CHU De-hai;ZHANG Ting;DONG Ze(SPIC Guangdong Electric Power Co.,Ltd.,Guangzhou Guangdong 510000,China;Hebei Engineering Research Center of Simulation & Optimized Control for Power Generation,North China Electric Power University,Baoding Hebei 071003,China)
出处
《计算机仿真》
北大核心
2019年第5期128-132,174,共6页
Computer Simulation
关键词
闭环子空间
预测控制
数据驱动
火电厂协调系统
Closed-loop subspace
Predictive control
Data-driven
Coordinated control systems of power plants