期刊文献+

图像引导下肝脏形变矫正仿真 被引量:2

Image-guided Liver Deformation Correction Simulation
下载PDF
导出
摘要 为解决腹腔镜肝切除手术中气腹压引起的肝脏形变问题,提出一种在图像引导下对肝脏形变进行矫正的流程。首先,对术前肝脏CT图像分割并网格划分成有限元网格,根据生物力学参数生成生物力学模型;其次,提取术中状态下肝脏表面与术前生物力学模型表面做基于ICP算法的初始配准,将配准结果作为生物力学边界条件求解变形场;然后,对于采集的术前CT图像与术中CT图像使用B样条算法进行非刚性配准,将得到配准后的变形场作为金标准;最后使用变形场作为约束条件求解力学方程,驱动生物力学模型变形。使用真实实验获取的七头猪的肝脏数据作为实验数据进行实验研究,结果表明上述方法在肝脏形变矫正问题的精确性和鲁棒性上具有一定的优越性。 A procedure of image-guided liver deformation correction under pneumoperitoneum is proposed to deal with the liver deformation problem caused by gas injection.First,we segmented the CT image of the liver and obtain the biomechanical model after mesh generation.Second,we extracted the intra operative liver surface and did registration with surface of the pre-operative biomechanical model based on Iterative Closest Point algorithm.The registration result was served as our boundary condition to solve deformation vector field.Then,we did non-rigid registration based on B spline algorithm to get deformation field as golden standard.At last,we used the deformation field to solve the mechanical equation,driving our model to deform.The liver data from real pig were used as the experimental data to carry the research and the results show that the method has certain advantages of the accuracy and robustness in the problem of liver deformation correction.
作者 董露露 刘建明 DONG Lu-lu;LIU Jian-ming(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin Guangxi 541004,Chin)
出处 《计算机仿真》 北大核心 2019年第5期250-254,共5页 Computer Simulation
基金 国家自然科学基金(61262074) 广西可信软件重点实验室开放课题(kx201101) 广西高校优秀人才资助计划(桂教人201065) 广西自然科学回国基金(2012GXNSFCA053009)
关键词 图像引导 软组织形变 有限元模型 非刚性配准 Image-guided Soft Tissue deformation FEM Non-rigid deformation
  • 相关文献

参考文献1

二级参考文献23

  • 1KRCastleman著 朱志刚等译.数字图像处理[M].北京:电子工业出版社,1998..
  • 2C K Lee,S P Wong.A Mathematical Morphological Approach for Segmenting Heavily Noise-corrupted Images[J].Pattern Recognition,1996,29(8):1347-1357.
  • 3M A Fischler,J M Tenenbaum,H C Wolf.Detection of Roads and Linear Structures in Low Resolution Aerial Imagery Using a Multi-source Knowledge Integration Technique[J].Computer Graphics and Image Processing,1981,15(3):201-203.
  • 4D Terzopoulos,A Witkin,M Kass.Constraints on Deformable Mo-dels:Recovering 3D Shape and Nonrigid Motion[J].Artificial Intelligence,1988,36(1):91-123.
  • 5M Kass,A Witkin,D Terzopoulos.Snake:Active Contour Models[J].International Journal of Computer,1987,1(4):321-331.
  • 6J A Sethian.Numerical Algorithms for Propagating Interfaces:Hamilton-Jacobi,Equations and Conservation Laws[J].J.Diff.Geom.,1990,31(1):131-161.
  • 7S Osher,J A Sethian.Fronts Propagating with Curvature-dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics,1988,79(1):12-49.
  • 8J S Weszka.A Survey of Thresholding Techniques[J].Computer Graphics and Image Processing,1978,7(2):259-265.
  • 9J C Rajapakse,J N Giedd,J L Rapoport.Statistical Approach to Segmentation of Single-channel Cerebral MR Images[J].IEEE Trans.on Medical Imaging,1997,16(2):176-186.
  • 10K Held,et al.Markov Random Field Segmentation of Brain MR Images[J].IEEE Trans.on Medical Imaging,1997,16(6):878-886.

共引文献15

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部