期刊文献+

基于DCS的多轴承振动信号重构算法研究 被引量:5

A Study on Reconstruction Algorithm of Multi-Bearing Vibration Signal Based on DCS
下载PDF
导出
摘要 针对轴承状态监测中多传感器会产生大量数据,给数据存储、传输和处理带来困难的问题,提出一种适用于多轴承振动信号的分布式压缩感知重构算法。通过引入离散余弦变换,实现了轴承振动信号在变换域的稀疏化;通过基于TSBL的重构算法,实现了多轴承振动信号的联合重构。实验利用机械故障模拟器产生的多传感加速度振动信号对提出的算法进行了分析。结果表明:提出的基于分布式压缩感知技术的联合重构算法能以更少数据重构原始信号,进一步提升了重构性能,解决了轴承状态监测中多传感器数据采集造成的问题。 As the multi-sensor generate large amounts of data in bearing condition monitoring,which present difficulties in data storage,transmission and processing,this paper proposes a distributed compression sensing reconstruction algorithm suitable for multi-bearing vibration signals.By introducing discrete cosine transform,the bearing vibration signal was sparse in the transform domain,and joint reconstruction of bearing vibration signals was realized by the distributed compression reconstruction algorithm based on TSBL.The proposed algorithm was analyzed by using the multi-sensing acceleration vibration signal produced by the mechanical fault simulator.The results show that the distributed joint reconstruction algorithm proposed in this paper can reconstruct original signals with less data,achieve better reconstruction performance,and solve the problem of multi-sensor data acquisition in bearing condition monitoring.
作者 杨丽娟 王刚 秦顺利 王前 YANG Li-juan;WANG Gang;QIN Shun-li;WANG Qian(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou Jiangsu 221008,China;Research Center of Internet of Things (Perception Mine),China University of Mining and Technology,Xuzhou Jiangsu 221008,China)
出处 《计算机仿真》 北大核心 2019年第5期316-319,324,共5页 Computer Simulation
基金 国家重点研发计划课题(2017 YFC0 804404)
关键词 分布式压缩感知 轴承振动信号 联合重构 稀疏贝叶斯学习 Distributed compressed sensing Bearing vibration signal Joint reconstruction Sparse Bayesian learning
  • 相关文献

参考文献2

二级参考文献93

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献717

同被引文献61

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部