期刊文献+

基于梯度追踪的MIMO-OFDM稀疏信道估计算法 被引量:1

MIMO-OFDM Sparse Channel Estimation Algorithm Based on Gradient Pursuit
下载PDF
导出
摘要 现有的压缩感知MIMO-OFDM信道估计方法多采用正交匹配追踪算法及其改进的算法。针对该类算法重构大规模的数据存在计算复杂度高、存储量大等问题,提出了基于梯度追踪算法的MIMO-OFDM稀疏信道估计方法。梯度追踪算法采用最速下降法对目标函数解最优解,即每步迭代时计算目标函数的搜索方向和搜索步长,并以此选择原子得到每次迭代重构值的最优解。本文使用梯度追踪算法对信道进行估计,并与传统的最小二乘估计算法、正交匹配追踪算法的性能和计算复杂度进行比较。仿真结果表明,梯度追踪算法能够保证较好的估计效果,减少了导频开销,降低了运算复杂度,提高了重构效率。 The existing MIMO-OFDM channel estimation method based on compressed sensing uses multiple orthogonal matching pursuit algorithm and its improved algorithm.For such a large scale data reconstruction algorithm has high computational complexity,storage capacity and other issues,MIMO-OFDM sparse channel estimation method based on the gradient pursuit algorithm is proposed.Gradient pursuit algorithm uses the steepest descent method for the objective function optimal solution,namely calculating the search direction of the objective function and the search step with each iteration,and selecting the optimal solution every atom iterative reconstruction values.As used herein,the estimation performance of gradient pursuit algorithm is compared with the performance of traditional least squares estimation algorithm and orthogonal matching pursuit algorithm.The simulation results show that the gradient pursuit algorithm can guarantee a better estimate and reduce the pilot overhead and the computational complexity.Therefour,the efficiency of reconstruction is improved.
作者 吴君钦 王加莉 Wu Junqin;Wang Jiali(Faculty of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,341000,China)
出处 《数据采集与处理》 CSCD 北大核心 2019年第3期396-405,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61501210,61741109)资助项目 江西省教育厅科技项目(GJJ14428)资助项目
关键词 MIMO-OFDM 信道估计 压缩感知 梯度追踪 稀疏多径信道 MIMO-OFDM channel estimation compressed sensing gradient pursuit sparse multipath channel
  • 相关文献

参考文献8

二级参考文献141

  • 1王甫莉,阔永红,陈健,刘献玲.MIMO-OFDM系统信道估计算法综述[J].电子科技,2007,20(2):73-75. 被引量:11
  • 2Donoho D L.Compressed sensing[J].IEEE Trans on In-formation Theory,2006,52(4):1289-1306.
  • 3Candès E J,Romberg J,Tao T.Robust uncertainty prin-ciples:Exact signal reconstruction from highly incompletefrequency information[J].IEEE Trans on InformationTheory,2006,52(2):489-509.
  • 4Paredes J L,Arce G R,Wang Z M.Ultra-wideband com-pressed sensing:channel estimation[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(3):383-395.
  • 5S S Chen,D L Donoho,M A Saunders.Atomic decom-position by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 6Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:Application to com-pressed sensing and other inverse problems[J].IEEEJoumal of Selected Topic in Signal Proeessing,2007,l(4):586-598.
  • 7Blumensath T,Davies M E.Gradient pursuits[J].IEEETrans on Signal Processing,2008,56(6):2370-2382.
  • 8Elad M.Optimized projections for compressed sensing[J].IEEE Trans on Signal Processing,2007,55(12):5695-5702.
  • 9Molisch A F.IEEE 802.15.4a channel model-final re-port[EB/OL].[2009-02-28]http:∥www.ieee802.org/15/pub/TG4a.html.
  • 10Benedetto M D, Kaiser T, Molisch A F. UWB com- munication systems: a comprehensive overview [M]. New York, USA.. Hindawi Publishing Corporation, 2006.

共引文献136

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部