期刊文献+

基于灰度级映射函数建模的多曝光高动态图像重建 被引量:7

Multi?exposure HDR Image Reconstruction Based on Gray Scale Mapping Function Modeling
下载PDF
导出
摘要 为解决传统多曝光图像融合的实时性和动态场景鬼影消除问题,提出了基于灰度级映射函数建模的多曝光高动态图像重建算法。对任意大小的低动态范围(Low dynamic range,LDR)图像序列,仅需拟合与灰阶数目相同个数而不是与相机分辨率个数相同的视觉适应的S形曲线,利用最佳成像值判别方法直接融合,提高了算法的融合效率,能够达到实时性图像融合要求。对动态场景的融合,设计灰度级映射关系恢复理想状态的多曝光图像,利用差分法检测运动目标区域,作鬼影消除处理,融合得到一幅能够反映真实场景信息且不受鬼影影响的高动态范围图像。 To solve the real-time problem of traditional multi-exposure image fusion and ghost elimination in dynamic scenes,a multi-exposure high dynamic range(HDR)image reconstruction algorithm based on gray scale mapping function modeling is proposed.For low dynamic range(LDR)image sequence of arbitrary size,only visual adaptation S-shaped curves with the same the number of gray-scale need to be fitted,rather than the camera resolution pixels.The HDR can be achieved by fusing the best imaging values directly,which can greatly improve the efficiency of the algorithm fusion and achieve real-time requirements for dynamic scene.The ideal state of multi-exposure image can be achieved by the design of the gray level mapping function.The ghost can be eliminated through moving target detection with difference method.Finally a HDR image reflecting the real scene information and unaffected by ghosts can be achieved.
作者 付争方 朱虹 余顺园 薛杉 Fu Zhengfang;Zhu Hong;Yu Shunyuan;Xue Shan(College of Electronics and Information Engineering,Ankang University,Ankang,725000,China;School of Automation and Information Engineering,Xi’an University of Technology,Xi’an,710048,China)
出处 《数据采集与处理》 CSCD 北大核心 2019年第3期472-490,共19页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61801005)资助项目 陕西省新工科研究与实践资助项目 安康学院高层次人才专项(2016AYQDZR06)资助项目
关键词 高动态范围图像 多曝光图像 图像融合 灰度级映射 high dynamic range image multi exposure-image image fusion gray scale mapping
  • 相关文献

参考文献2

二级参考文献22

  • 1华顺刚,王丽丹,欧宗瑛.同一场景不同曝光图像的配准及HDR图像合成[J].计算机辅助设计与图形学学报,2007,19(4):528-534. 被引量:9
  • 2华顺刚,王丽丹,欧宗瑛.基于多幅不同曝光量照片的场景高动态范围图像合成[J].大连理工大学学报,2007,47(5):678-682. 被引量:15
  • 3CHAURASIYA R K. High dynamic range imaging for dy-namic scenes[ C]. Proceedings of 4th International Con-ference on Communication Systems and Network Technol-ogies ,2014 :828-832.
  • 4ZHANG W, CHAM W K. Gradient-directed multi-expo-sure composition [ J ]. IEEE Transactions on Image Pro-cessing, 2012, 21(4) : 2318-2323.
  • 5KUMAR B K S. Image fusion based on pixel significanceusing cross bilateral filter [ J]. Signal, Image and VideoProcessing, 2013,9:1-12.
  • 6DEBEVEC P E,MALIK J. Recovering high dynamicrange radiance maps from photographs [ C ]. In: Pro-ceedings of SIGGRAPH ’ 97 ACM Transactions onGraphics, 1997; 369-378.
  • 7MITSUNAGA T,NAYAR S K. Radiometric self-calibra-tion [ C]. IEEE Computer Society Conference on Comput-er Vision and Pattern Recognition, 1999,1(6):374-380.
  • 8MANN S. Comparametric equations with practical appli-cations in quantigraphic image processing [ J ]. IEEETransactions on Image Processing,2000,9(8):1389-1406.
  • 9LI ZH G, ZHENG J H. Visual-salience-based tone map-ping for high dynamic range images [ J ]. IEEE Transac-tions on Industrial Electronics, 2014, 61 ( 12 ):7076-7082.
  • 10BLOCK M, SCHAUBERT M,WIESEL F, et al. Multi-exposure document fusion based on edge-intensities [ C ].Proceedings of International Conference on Document A-nalysis and Recognition, 2009 : 136-140.

共引文献27

同被引文献77

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部