期刊文献+

MIMO雷达三维成像自适应Off-grid校正方法 被引量:9

Adaptive Off-grid Calibration Method for MIMO Radar 3D Imaging
下载PDF
导出
摘要 在压缩感知成像算法中,真实目标点一般不会恰好落在预先划定的网格点上,这种网格偏离(Off-grid)问题会带来真实回波与测量矩阵之间的失配,严重降低雷达成像的性能。针对多输入多输出(MIMO)雷达3维成像的网格失配问题,该文提出一种自适应的Off-grid校正方法,基于Off-grid目标的稀疏回波模型构造贝叶斯概率密度函数,采用最大后验概率(MAP)方法求解含有失配偏差的稀疏像。与传统方法相比,该方法可以充分利用失配参数的先验信息,自适应地更新参数,降低了失配误差的影响,并能实现对稀疏目标和噪声功率的高精度估计。仿真结果表明,该方法可以有效地实现对网格失配的优化,具有精确且稳定的成像性能。 In Compressive Sensing (CS) imaging algorithms, the true targets usually can not locate on the predefined grids exactly. Such Off-grid problems result in mismatch between true echo and measurement matrix, which seriously degrades the performance of radar imaging. An adaptive calibration method is proposed to solve the off-grid problems in MIMO radar Three-Dimensional (3D) imaging. Bayesian probability density functions can be constructed based on the sparse echo model of Off-grid targets, and the Maximum A Posteriori (MAP) method is used to obtain sparse imaging with mismatch errors. Compared with the traditional methods, the proposed method can make full use of mismatch parameters’ priori information and adaptively update the parameters, which can reduce the influence of mismatch errors, and achieve high-precision estimation for sparse targets and noise power. Finally, the simulation results confirm that the proposed method can effectively optimize mismatch errors with accurate and stable imaging performance.
作者 王伟 胡子英 龚琳舒 WANG Wei;HU Ziying;GONG Linshu(Harbin Engineering University Automation Department, Harbin 150001, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1294-1301,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571148,61871143) 中央高校基本科研基金(HEUCFG201823,HEUCFP201836) 哈尔滨应用技术研发项目(2017R-AQXJ095)~~
关键词 MIMO雷达 Off-grid校正 3维稀疏成像 最大后验概率 MIMO radar Off-grid calibration Three-dimensional sparse imaging Maximum A Posteriori (MAP)
  • 相关文献

参考文献4

二级参考文献44

  • 1Marivi T A,Paco L D,Jordi J M. A novel strategy for radar imaging based on compressive sensing[J].IEEE Transactions on Geoscience and Remote Sensing,2010,(12):4285-4295.
  • 2Chen Wenjen,Narayanan R M. Antenna placement for minimizing target localization error in UWB MIMO noise radar[J].IEEE Antennas and Wireless Propagation Letters,2011.135-138.
  • 3Fishler E,Haimovich A,Blum R. MIMO radar:An idea whose time has come[A].Philadelphia,USA:IEEE Press,2004.71-78.
  • 4Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 5Candes E J,Wakin M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):21-30.doi:10.1109/MSP.2007.914731.
  • 6Romberg J. Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):14-20.doi:10.1109/MSP.2007.914729.
  • 7Potter L C,Ertin E,Parker J T. Sparsity and compressed sensing in radar imaging[J].Proceedings of the IEEE,2010,(06):1006-1020.
  • 8Shastry M C,Narayanan R M,Rangaswamy M. Compressive radar imaging using white stochastic waveforms[A].Niagara Falls,Canada:IEEE Press,2010.90-94.
  • 9Candes E J. The restricted isometry property and its implications for compressed sensing[J].COMPTES RENDUS MATHEMATIQUE,2008,(9-10):589-592.
  • 10Chen Chunyang,Vaidyanathan P P. Comperssed sensing in MIMO radar[A].Pacific Grove,USA:IEEE Press,2008.41-44.

共引文献22

同被引文献41

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部