期刊文献+

基于改进鲸鱼优化策略的贝叶斯网络结构学习算法 被引量:19

Bayesian Network Structure Learning Based on Improved Whale Optimization Strategy
下载PDF
导出
摘要 针对当前贝叶斯网络结构学习算法易陷入局部最优和寻优效率低的问题,该文提出一种基于改进鲸鱼优化策略的贝叶斯网络结构学习算法。该算法首先提出一种新的方法建立较优的初始种群,然后利用不产生非法结构的交叉变异算子构建适用于贝叶斯网络结构学习的改进捕食行为,同时采用动态调节参数增强算法个体寻优的能力,通过适应度排序更新种群,最终获得最优的贝叶斯网络结构。仿真结果表明,该算法具有全局收敛性,寻优效率高,精确率高于其它同类优化算法。 A Bayesian network structure learning algorithm based on improved whale optimization strategy is proposed to solve the problem that the current Bayesian network structure learning algorithm is easily trapped in local optimal and is of low optimization efficiency. The improved algorithm proposes first a new method to establish a better initial population, and then it uses the cross mutation operator that does not produce the illegal structure to construct an improved predation behavior suitable for Bayesian network structure learning. At the same time, it adopts the dynamic parameter tuning strategy to enhance the individual search ability. The population is updated followed by the fitness order so that the optimal Bayesian network structure is obtained. Simulation results demonstrate that the algorithm has global convergence, high efficiency and higher accuracy than other similar optimization algorithms.
作者 刘浩然 张力悦 范瑞星 王海羽 张春兰 LIU Haoran;ZHANG Liyue;FAN Ruixing;WANG Haiyu;ZHANG Chunlan(School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province,Yanshan University, Qinhuangdao 066004, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1434-1441,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(51641609)~~
关键词 贝叶斯网络结构学习 改进鲸鱼优化算法 改进捕食行为 动态调节参数 Bayesian network structure learning Improved whale optimization algorithm Improved hunt behavior Dynamic adjustment parameter
  • 相关文献

参考文献5

二级参考文献40

  • 1李百策,苑森淼,王利民.贝叶斯网络的简约模式表达[J].仪器仪表学报,2005,26(10):1070-1073. 被引量:1
  • 2邓歆,孟洛明.基于贝叶斯网络的通信网告警相关性和故障诊断模型[J].电子与信息学报,2007,29(5):1182-1186. 被引量:24
  • 3Gardner R D and Harle D A.Methods and systems for alarm correlation.Global Telecommunications Conference,1996.GLOBECOM '96.'Communications:The Key to Global Prosperity,London,UK,18-22 Nov.,1996,vol.1:136-140.
  • 4Bouloutas A T,Calo S,and Finkel A.Alarm correlation and fault identification in communication networks.IEEE Trans.on Communications,1994,42(2/3/4):523-533.
  • 5Ekaette E U and Far B H.A framework for distributed fault management using intelligent software agents.IEEE CCECE 2003,Canadian Conference on Electrical and Computer Engineering,Canada,4-7 May,2003,vol.2:797-800.
  • 6Steinder M and Sethi A S.End-to-end service failure diagnosis using belief networks.Network Operations and Management Symposium (NOMS),Florence,Italy,2002:375-390.
  • 7Russell S and Norving P.Artificial Intelligence:A Modern Approach (Second Edition).USA,Prentice-Hall,2003:540-546.
  • 8Choi Jaesung,Choi Myungwhan,and Lee Sang-Hyuk.An alarm correlation and fault identification scheme based on OSI managed object classes.ICC '99.IEEE International Conference on Communications,Vancouver,BC,6-10 June,1999,vol.3:1547-1551.
  • 9Li H,Yang S,and Baras J S.On system designs for distributed,extensible framework for network monitoring and control.Tech.Rep.CSHCN TR 2001-12,Center for Satellite and Hybrid Communication Networks,University of Maryland,2001.
  • 10张琪,胡昌华,乔玉坤.基于权值选择的粒子滤波算法研究[J].控制与决策,2008,23(1):117-120. 被引量:45

共引文献115

同被引文献151

引证文献19

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部