期刊文献+

非线性和非高斯性共存的序批次反应处理过程故障诊断(英文) 被引量:1

Fault diagnosis of sequential batch reaction process with nonlinear and non-Gaussian coexistence
下载PDF
导出
摘要 序批式反应器(SBR)的处理过程的数据具有非高斯分布和高度非线性的特点,传统特征提取方法在进行特征提取时仅仅考虑信息最大化而忽略数据的簇结构信息导致数据特征提取的不完整.由于多向核熵成分分析是一种新的监测方法,在监测过程中的应用表明能够克服传统监测方法的缺陷,减少误报警率.因此本文结合多向核熵成分分析的的优势,提出多向核熵独立成分分析方法用于SBR过程监测及故障诊断.首先,将三维SBR过程数据利用一种新的数据展开技术变为二维数据;其次,利用核熵成分分析将展开后的二维数据映射到高维空间用独立成分分析进行独立成分提取;最后提出一种基于多向核熵独立成分分析的故障诊断方法进行故障诊断.将该方法和传统方法应用于80升的SBR处理过程的监测结果表明,本文提出的方法优于传统的多向独立成分分析方法. The data of sequencing batch reactor (SBR) has characteristics of non-Gaussian distribution and high nonlinearity, In order to solve the problem that SBR process monitoring algorithm can only maximize the use of data information and ignore the information in the structure of data cluster, a new multi-way kernel entropy component analysis (MKECA) method is proposed. It also address the shortcomings of the traditional monitoring method in omission failure rate. A novel contribution analysis scheme named bar plot is developed for MKEICA to diagnose faults. The proposed MKEICA method consist of three steps: 1) the three-dimensional data of SBR is unfolded into two-dimensional by a new data expanding method. 2) kernel entropy principal component analysis (KEPCA) is adopted to map the two-dimensional data into a high dimensional feature space and use independent component analysis (ICA) to extract independent components (ICs) in feature space. 3) in the stage of online monitoring,bar plot is used to identify the variables causing the fault. This method is successfully applied to an 80 L lab-scale SBR, and the experimental results demonstrate that, comparing with traditional MKICA, the proposed MKEICA method exhibits better performance in fault detection and diagnose.
作者 常鹏 乔俊飞 王普 高学金 CHANG Peng;QIAO Jun-fei;WANG Pu;GAO Xue-jin(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China;Research Engineering Center of Digital Community Ministry of Education,Beijing 100124,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第5期728-736,共9页 Control Theory & Applications
基金 Supported by the National Natural Science Foundation of China(61364009,61174109) the Beijing Postdoctoral Research Foundation
关键词 序批式反应器 多向核熵独立成分 故障检测 故障诊断 sequencing batch reactor multi-way kernel entropy independent component fault detection fault diagnosis
  • 相关文献

参考文献3

二级参考文献23

  • 1Pieter V K, Geert G, Jef V, et al. Dynamic model-based fault diagnosis for (bio) chemical batch processes [J]. Computer and Chemical Engi- neering, 2012, 40(5) : 12 -21.
  • 2Mac G, Kourt T. Statistical process control of muhivariate processes[J]. Control Engineering Practice, 1995, 3 (3) : 403 -414.
  • 3Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis [ J ]. American Institute Chemical Engi- neering Journal, 1994, 40(8) : 1361 - 1375.
  • 4Geert G, Jef V, Jan F M. Discriminating between critical and noncritical disturbances in (bio) chemical batch processes using multimodel fault detection and end-quality prediction[ J]. Industrial and Engineering Chemistry Research, 2012, 51 (38) : 12375 -12381.
  • 5Naes T, Tomic O. Multi-block regression based on combination so for thogonalisation, PLS regression and canonical correlation analysis [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 124:32 -42.
  • 6Scholkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalue problem[ J].Neural Computation, 1998, 10 (5) : 1299 - 1399.
  • 7Zhao C H, Yao Y, Gao F R, et al. Statistical analysis and online monitoring for muhimode processes with between-mode transitions[ J]. Chem- ical Engineering Science, 2010, 65 (22): 5961 -5975.
  • 8Wang Y J, Jia M X, Mao Z Z. Weak fault monitoring method for batch process based on nmlti-model sdkpea[ J]. Chemometrics and Laboratroy Systems, 2012, 118(1) : 1 -12.
  • 9Jia M X, Chu F, Wang F L, et al. On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Cbemomet- tics and Intelligent Laboratory Systems, 2010, 101 (2) : 110 -122.
  • 10Zhao S J, Zhang J, Xu Y M, et al. Nonlinear projection to latent structures method and its applications [ J ]. Industrial and Engineering Chem- istry Research, 2006, 45 ( 11 ) : 3843 - 3852.

共引文献16

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部