摘要
对k个节点数为n的高斯有向图,本文充分利用节点之间的偏序先验,并挖掘多重高斯有向图之间的相似性结构,并将其分为p个组.基于极大似然估计提出了带相似性结构惩罚项的Lasso回归模型用于估计图的邻接矩阵,并利用时间复杂度为O(nk^2p)的坐标下降法求解该模型.通过数值实验对比了本文算法和PC算法,证明了本文算法较PC算法对于多重高斯有向图具有较好地恢复效果.
In this paper, we fully utilize the natural ordering between nodes and use the similarity structure between different graphs. A regression model based on the maximum likelihood estimation with similar structure penalty term is proposed to estimate the adjacency matrices of the networks . Computationally, the model is solved by coordinate descent method with complexity O(nk^2p). Compared with PC algorithm, numerical experiments demonstrates the algorithm proposed in this paper performs well.
作者
王琦
赵强
Wang Qi;Zhao Qiang(School of Mathematics and Statistics, Shandong Normal University,250358,Jinan,China)
出处
《山东师范大学学报(自然科学版)》
CAS
2019年第2期146-150,共5页
Journal of Shandong Normal University(Natural Science)
基金
山东省自然科学基金资助项目(ZR2018BA013)
国家自然科学青年基金资助项目(11301309)