期刊文献+

Kriging模型改进的多目标优化算法研究 被引量:3

A Improved Multi-objective Optimization Algorithm using Kriging Model
下载PDF
导出
摘要 将基于模糊C均值聚类改进的多目标优化算法(A fuzzy c-means clustering based evolutionary algorithm, FCEA)与高价单目标优化算法(Efficient global optimization,EGO)进行融合,基于Kriging模型提出了一种改进的多目标优化算法(FCEA-EGO)。在FCEA-EGO算法寻优过程中,利用模糊C均值聚类算法从整个种群中选择相似个体进行遗传操作,引导算法进行寻优;基于EGO算法的校正点选择机制,逐步修正校正点,提高Kriging模型精度。实验结果表明,FCEA-EGO算法相对于典型的高价多目标优化算法MOEA/D-EGO、ParEGO、SMS-EGO具有更优异的求解能力。最后,基于FCEA-EGO算法对某轻型飞机的齿轮减速器进行了优化设计,验证了其求解实际工程优化问题的能力。 A fuzzy C-Means Clustering Based Evolutionary Algorithm (FCEA) is merged with Efficient Global Optimization (EGO), and a Kriging model is proposed to develop a multi-objective optimization algorithm (FCEA-EGO). In the optimization process of FCEA-EGO algorithm, the fuzzy C-means clustering algorithm is used to select similar individuals from the whole population for genetic operation, and the algorithm is guided to be optimized;Based on the EGO algorithm′s correction point selection mechanism, the correction points are gradually corrected to improve the accuracy of the Kriging model. The experimental results show that the FCEA-EGO algorithm has better solving ability than the typical high-price multi-objective optimization algorithms MOEA/D-EGO, ParEGO and SMS-EGO. Finally, based on the FCEA-EGO algorithm, the gear reducer of a light aircraft is optimized, and its ability to solve practical engineering optimization problems is verified.
作者 余竹玛 李梅 Yu Zhuma;Li Mei(Center of College Student Quality Education, Three Gorges University, Hubei Yichang 443002, China)
出处 《机械科学与技术》 CSCD 北大核心 2019年第6期977-984,共8页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(71501110)资助
关键词 KRIGING模型 多目标优化设计 校正点选择 齿轮减速器 Kriging model Multi-objective optimization design correction point selection gear reducer fuzzy C-means clustering algorithm efficient global optimization
  • 相关文献

参考文献4

二级参考文献23

  • 1顾松年,徐斌,荣见华,姜节胜.结构动力学设计优化方法的新进展[J].机械强度,2005,27(2):156-162. 被引量:45
  • 2龚春林,袁建平,谷良贤,苟永杰.基于响应面的变复杂度气动分析模型[J].西北工业大学学报,2006,24(4):532-535. 被引量:6
  • 3高月华.基于Kriging代理模型的优化设计方法及其在注塑成型中的应用[D].大连:大连理工大学,2008:16,19-22.
  • 4S-ndergaard M B, Pedersen C B W. Applied topologyoptimization of vibro-acoustic hearing instrumentmodels[J]. Journal of Sound and Vibration, 2014, 333:683-692.
  • 5Shu Lei, Wang Michael Yu, Fang Zongde, et al. Level setbased structural topology optimization for minimizingfrequency response[J]. Journal of Sound and Vibration,2011, 330: 5820-5834.
  • 6Jiang Kun, Zhou Xionghui, Li Ming, et al. Amulti-objective optimization and decision algorithm forlocator layout continuous searching in checking fixturedesign[J]. Int J Adv Manuf Technol, 2013, 67: 357-366.
  • 7Wang Hui, Rong Yiming (Kevin), Li Hua, et al.Computer aided fixture design: recent research andtrends[J]. Computer-Aided Design, 2010, 42: 1085-1094.
  • 8Kilickap E, Huseyinoglu M, Ahmet Y. Optimization ofdrilling parameters on surface roughness in drilling ofAISI 1045 using response surface methodologyandgenetic algorithm[J]. The International Journal ofAdvanced Manufacturing Technology, 2010, 52: 79-88.
  • 9Palanikumar K. Application of Taguchi and responsesurface methodologies for surface roughness inmachining glass fiber reinforced plastics by PCDtooling[J]. Int J Adv Manuf Technol, 2008, 36: 19-27.
  • 10Kumar A S, Subramaniam V, Seow K C. Conceptualdesign of fixtures using genetic algorithms[J]. Int J AdvManuf Technol, 1999, 15: 79-84.

共引文献23

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部