摘要
井筒式泵装置的双泵模型与单泵模型相比,能提供更大的抽排能力,在平时的运行或者维护中, 2 台泵可交替使用,可靠性较高。通过 CFD 软件对 2 种不同进水方向的井筒式泵装置双泵模型内部流动进行数值模拟,获得了泵装置内部三维流动特性,并预测了泵装置的性能。计算结果表明正向进水比侧向进水性能更好。通过分析速度云图和流线图,发现侧向进水时水流在整体上有顺时针旋转的态势,2 台泵的进水状态有较大的区别。从喇叭管进口断面涡量云图中可以得到,涡量较高的区域主要是喇叭管下方,2 个喇叭管下环形区域的涡量是由内到外逐渐增大,到超过喇叭管的范围外,又逐渐减小到 0,而正向进水的环内一对漩涡以及侧向进水的环内单个漩涡,由外到内涡量逐渐增大。
The double-pump model of the wellbore pump unit can provide greater drainage capacity compared to the single-pump model. In the usual operation or maintenance,the two pumps can be used alternately with higher reliability.By numerical simulation of the internal flow of the double-pump model of wellbore pump unit with two different inlet directions using CFD software,the three-dimensional flow characteristics of the pump unit were obtained,and the performance of the pump unit was predicted. The calculation results show that the forward inflow performance was better than the lateral inflow performance. By analyzing the speed cloud diagram and the streamline diagram,it was found that the water flow for lateral inflow presents a tendency of clockwise rotation as a whole,and there was a greater difference between the inflow states of the two pumps. From the vorticity cloud diagram of inlet section of the flare pipe,the area with higher vorticity is mainly under the flare pipe. The vorticity in the annular area under the two flare pipes gradually increased from the inside to the outside,then,it gradually decreased to 0 beyond the range of the flare pipe,while for the pair of vortexes in the forward inflow annulus and the single vortex in the lateral inflow annulus,their vorticity gradually increased from the outside to the inside.
作者
查智力
刘超
严天序
黄佳卫
Zha Zhili;Liu Chao;Yan Tianxu;Huang Jiawei(School of Hydraulic,Energy and Power Engineering,Yangzhou University,Yangzhou 225009)
出处
《流体机械》
CSCD
北大核心
2019年第5期44-49,共6页
Fluid Machinery
基金
“十二五”国家科技支撑计划资助项目(2015BAD20B01)
国家自然科学基金项目(51279173)
江苏省高校优势学科建设工程资助项目(PAPD)
江苏省水利科技项目(2017031)
关键词
井筒式泵装置
双泵模型
进水方向
水力特性
涡量
wellbore pump unit
double-pump model
inflow direction
hydraulic performance
vorticity