期刊文献+

基于精细化分析的不对称刚构桥研究

Research on Unsymmetrical Rigid Frame Bridge Based on Fine Analysis
下载PDF
导出
摘要 为研究不对称刚构桥在外荷载作用下内力及变形的规律,基于精细化分析的思路,利用midas/FEA建立空间实体模型分析,实现对温度、支座沉降、收缩徐变的计算。文中依托广东省省道S223线松源至雁洋段改建工程黄社大桥(60+95+150+90)m四跨不对称连续刚构桥为工程背景,对比分析了实体模型与杆系模型在温度、支座沉降、收缩徐变下顶底板主拉应力的差异。结果分析表明:在各工况的作用下,主墩墩顶主拉应力较为集中,主墩侧边跨应力较次边跨及远离主跨的边跨侧大,其中降温及徐变作用对顶底板主拉应力影响较大,实体模型中应力及变形结果均比杆系模型有不同程度的增加。 In order to study the law of internal force and deformation of unsymmetrical rigid frame bridge under external load, based on the idea of fine analysis, the spatial solid model analysis is established by using midas/FEA, and the calculation of temperature, support settlement and shrinkage and creep is realized. Based on the project background of Huangshe Bridge (60+95+150+90) m four-span continuous rigid frame bridge of S223 provincial road in Guangdong Province, the differences of principal tensile stress between solid model and bar model under temperature, support settlement, shrinkage and creep are compared and analyzed in this paper. The results show that under the action of various working conditions, the principal tensile stress of the top of the main pier is concentrated, and the side span stress of the main pier is larger than that of the secondary side span and the side span far away from the main span, and the effect of cooling and creep on the principal tensile stress of the roof and floor is larger than that of the secondary side span and the side span away from the main span. The results of stress and deformation in the solid model are higher than that of the bar model to some extent.
作者 蔡小瑾 CAI Xiao-jin(Guangdong Province Communications Planning & Design Institute Co. Ltd., Guangzhou 510507, China)
出处 《广东交通职业技术学院学报》 2019年第2期30-34,共5页 Journal of Guangdong Communication Polytechnic
关键词 不对称刚构桥 实体模型 杆系模型 主拉应力 unsymmetrical rigid frame bridge solid model member system model principal tensile stress
  • 相关文献

参考文献1

二级参考文献25

  • 1张峰.预应力混凝土连续箱梁开裂后的结构行为研究[D].南京:东南大学,2007:1―15.
  • 2吴先树. 大跨径预应力混凝土箱梁受力裂缝分析[D].南京: 东南大学, 2002.
  • 3BA?ANT Z P, YU Q, LI G, et al. Excessive deflections of record-span prestressed box girder: lessons learned from the collapse of the KororBabeldaob Bridge in Palu[J]. American Concrete Institute, 2010, 32(6):44-52.
  • 4BURGOYNE C, SCANTLEBURY R. “Why did Palau bridge collapse?”[J]. Journal of Structural Engineering, 2006, 84(11):30-37.
  • 5BAZ?ANT Z P, MIJA H H. Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks[J]. Journal of the Mechanics and Physics of Solids, 2014, 63:187-200.
  • 6TAKáCS P F. Deformations in concrete cantilever bridges observations and theoretical modeling[D]. Trondheim, Norway: The Nowwegian University of Science and Technology, 2002.
  • 7K?STEK V, BA?ANT Z P, ZICH M, et al. Box Girder Bridge Deflections[J]. American Concrete Institute, 2006, 28(1):55-63.
  • 8CHEN Xiaodong, LI Guangyu, YE Guiru. Three dimensional nonlinear analysis of creep in concrete filled steel tube column[J]. Journal of Zhejiang University: Science A, 2005, 6(8):826-835.
  • 9QING Jiewen. Long-term effect analysis of prestressed concrete box-grider bridge widening[J]. Construction and Building Materials, 2011, 25(4):1580-1586.
  • 10DEZI L, GARA F, LEONI G, et al. Time-dependent analysis of shear-lag effect in composite beams[J].Engineering Mechanics, 2001, 217(1):71-79.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部