期刊文献+

采用区分性幅相联合字典学习的低截获概率信号分离方法

Low probability of intercept signal separation method using discriminative amplitude-phase dictionary learning
下载PDF
导出
摘要 为解决采用字典学习的信号分离方法存在的相位信息缺失和子字典交叉表示问题,提出一种区分性幅相联合字典学习方法。该方法针对相位信息缺失问题,构建了幅相联合字典模型;针对混合信号在联合字典上投影时存在的交叉表示问题,基于区分性字典学习思想提出在字典学习过程目标函数中加入交叉表示抑制项。仿真结果表明:幅相联合字典能够充分表示典型低截获概率信号的幅相信息,交叉表示抑制项能有效抑制信号间的交叉表示,算法具有良好的分离性能。 In order to solve the shortcomings of signal separation methods based on the dictionary learning in phase information loss and cross representation,a signal separation algorithm based on the discriminative amplitude-phase dictionary learning was proposed. In discriminative amplitude-phase dictionary learning method,a model of amplitude-phase dictionary was proposed to solve the problem of phase information loss. Meanwhile,based on the idea of discriminative dictionary learning,a penalty term of cross representation was added into the object function of dictionary learning to solve the problem of cross representation,which happens to the mixed signal projected in joint dictionary. Experiment results show that the amplitude and phase information of low probability of intercept signals can be fully represented by amplitude-phase dictionaries. Meanwhile,the proposed penalty term within discriminative amplitude-phase dictionary learning algorithm can profitably restrain the cross representation between signals and the proposed algorithm has a significant performance in signal separation.
作者 陈游 周一鹏 王星 田元荣 周东青 CHEN You;ZHOU Yipeng;WANG Xing;TIAN Yuanrong;ZHOU Dongqing(Aeronautics Engineering College,Air Force Engineering University,Xi′an 710038,China;College of Electronic Engineering,National University of Defense Technology,Hefei 230037,China;Northern Institute of Electronic Equipment of China,Beijing 100089,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第3期18-24,共7页 Journal of National University of Defense Technology
基金 航空科学基金资助项目(20152096019)
关键词 信号分离 字典学习 稀疏表示 低截获概率信号 signal separation dictionary learning sparse representation low probability of intercept signal
  • 相关文献

参考文献2

二级参考文献14

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部