期刊文献+

Rock mechanics for design of Brisbane tunnels and implications of recent thinking in relation to rock mass strength 被引量:2

Rock mechanics for design of Brisbane tunnels and implications of recent thinking in relation to rock mass strength
下载PDF
导出
摘要 This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane,Australia,particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger.Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare.For the road tunnels which have been constructed in Brisbane over the last 12 years,the strength of the more massive rock masses for continuum analysis has been estimated by the application of the Hoek-Brown(H-B)failure criterion using the geological strength index(GSI)to determine the H-B parameters mb,s and a.Over the last few years,alternative approaches to estimating rock mass strength for‘massive to moderately jointed hard rock masses’have been proposed by others,which are built on the work completed by E.Hoek and E.T.Brown in this area over their joint careers.This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units(the Brisbane Tuff),which is often encountered in tunnelling projects in Brisbane.The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass. This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane, Australia, particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger. Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare. For the road tunnels which have been constructed in Brisbane over the last 12 years, the strength of the more massive rock masses for continuum analysis has been estimated by the application of the HoekBrown(H-B) failure criterion using the geological strength index(GSI) to determine the H-B parameters mb, s and a. Over the last few years, alternative approaches to estimating rock mass strength for ‘massive to moderately jointed hard rock masses’ have been proposed by others, which are built on the work completed by E. Hoek and E.T. Brown in this area over their joint careers. This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units(the Brisbane Tuff), which is often encountered in tunnelling projects in Brisbane. The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期676-683,共8页 岩石力学与岩土工程学报(英文版)
关键词 Rock mass strength Hoek-Brown(H-B)failure criterion Triaxial testing BRITTLE FAILURE BRISBANE TUFF Rock mass strength Hoek-Brown(H-B) failure criterion Triaxial testing Brittle failure Brisbane Tuff
  • 相关文献

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部