摘要
本文介绍微分方程和李群表示的关系,特别是p进理论的近期进展.我们以柏原正树的五角图形为实表示理论的参考架,然后用Berthelot的算术D模理论和Schneider-Stuhler的楼的层理论介绍关于此图的P进类比所引起由Emerton,Kisin,Patel,Huyghe,Schmidt,Strauch所做的一些工作.
We discuss the relation between differential equations and Lie group representations, in particular the recent progress in p-adic theory. We use Kashiwara’s pentagon as a reference frame for the real representation theory and then report on some work arising from its p-adic analogue by Emerton, Kisin, Patel, Huyghe, Schmidt, Strauch using Berthelot’s theory of arithmetic D-modules and Schneider-Stuhler theory of sheaves on buildings.
作者
黎景辉
King Fai LAI(School of Mathematical Sciences,Capital Normal University,Beijing,100048,P.R.China)
出处
《数学进展》
CSCD
北大核心
2019年第3期257-301,共45页
Advances in Mathematics(China)
关键词
微分方程
李群
表示论
算术D模
旗簇
differential equations
Lie groups
represenation theory
arithmetic D-modules
flag varieties