摘要
Oxidation state changes under reaction conditions are very common in heterogeneous catalysis. However, due to the limitation of experiment and computational methods, the relation between oxidation state and catalytic activity is not clear. Herein, we obtain the most stable structures of palladium oxide films with different oxidation states on palladium metal surfaces using density functional theory calculations and a state-of-the-art optimization method, namely the particle swarm optimization. These structures clearly show the process of palladium oxide film formation on metallic surfaces. Using CO oxidation as a model reaction, we find that the activities increase first and then decrease with the increase of oxidation states, peaking at Pd_4O_3. Our findings offer an understanding of the phase transformation and the activity of non-stoichiometric phases.
Oxidation state changes under reaction conditions are very common in heterogeneous catalysis. However, due to the limitation of experiment and computational methods, the relation between oxidation state and catalytic activity is not clear. Herein, we obtain the most stable structures of palladium oxide films with different oxidation states on palladium metal surfaces using density functional theory calculations and a state-of-the-art optimization method, namely the particle swarm optimization. These structures clearly show the process of palladium oxide film formation on metallic surfaces. Using CO oxidation as a model reaction, we find that the activities increase first and then decrease with the increase of oxidation states, peaking at Pd_4O_3. Our findings offer an understanding of the phase transformation and the activity of non-stoichiometric phases.
基金
supported by the National Natural Science Foundation of China (21333003)
Queens University Belfast for a Ph.D. studentship