摘要
为有效模拟空间站对日定向装置驱动性能受柔性太阳翼的扰动,验证对日定向装置驱动控制性能,采用半物理试验技术对对日定向装置进行地面试验考核。设计超高刚度及运动误差无附加力自适应的半物理试验台,对支撑连接机构和加载单元进行有限元分析与刚度测试;建立大尺度柔性太阳翼的动力学模型,并采用Wilson θ法进行动力学模型的实时数值求解;运用跟踪微分法对对日定向装置低速运行下的角速度和角加速度进行估计;最后通过对半物理试验台的响应精度、加载有效性进行仿真和试验考核,结果表明试验台加载力矩幅值为0~85 Nm、频率为0.01~3 Hz时,绝对精度优于0.85 Nm,相对精度优于1%,从而验证了半物理试验台对太阳翼扰动载荷模拟的真实有效性,可实现对日定向装置的性能测试。
In order to effectively simulate the disturbance of the flexible solar wing and verify the driving control performance of a space station Sun-tracking unit, a semi-physical ground test technology is proposed. A semi-physical test platform with ultra-high stiffness, which can automatically adapt to motion errors without additional force is designed. The finite element analysis and stiffness test are conducted on the connection mechanism and loading unit. The dynamic model of large-scale solar wing is established and the real-time numerical algorithm is built using the Wilson θ method. The angular velocity and angular acceleration estimation of the Sun-tracking unit is obtained under low-speed rotation. Finally, the simulation and experiment results of the semi-physical test platform on response accuracy and load validity show that the torque loading absolute accuracy and relative accuracy are better than 0.85 Nm and 1% when the amplitude and frequency of the loading torque are 0 to 85 Nm and 0.01 to 3 Hz, which validate the load simulation effectiveness of the solar wing disturbance using a semi-physical test platform and the platform can also achieve the performance test of the Sun-tracking unit.
作者
刘明洋
贺云
徐志刚
白鑫林
LIU Ming-yang;HE Yun;XU Zhi-gang;BAI Xin-lin(Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China;University of Chinese Academy of Sciences, Beijing 100039 , China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2019年第5期596-603,共8页
Journal of Astronautics
关键词
对日定向装置
半物理仿真
角加速度估计
大型柔性电池帆板
刚柔混合动力学模型
Sun-tracking unit
Semi-physical simulation
Angle acceleration estimation
Large flexible battery panel
Rigid-flexible coupling dynamics model