期刊文献+

Numerical analysis of time-varying wear with elastic deformation in line contact 被引量:1

Numerical analysis of time-varying wear with elastic deformation in line contact
原文传递
导出
摘要 Wear is an important factor for failures of mechanical components. Current research on wear is mainly focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper understanding of the evolution of wear. This study proposed a numerical method to expound the wear process in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties during the calculation; one is that the contact shapes vary with time, causing the pressure distribution to change simultaneously and the other is the integral equation for calculating the contact pressure under different worn shapes. In the present study, the wear rate was computed using Archard's law and the wear process was calculated step by step until the specified total sliding distance was achieved. During each step of the calculation, the contact topography was updated. The simulation intuitively reproduced the contact state of change from line to surface contact throughout the wear process. Reasonable agreements on the changes of the wear scar, achieved from experiments and numerical simulations, were obtained. Wear is an important factor for failures of mechanical components. Current research on wear is mainly focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper understanding of the evolution of wear. This study proposed a numerical method to expound the wear process in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties during the calculation; one is that the contact shapes vary with time, causing the pressure distribution to change simultaneously and the other is the integral equation for calculating the contact pressure under different worn shapes. In the present study, the wear rate was computed using Archard's law and the wear process was calculated step by step until the specified total sliding distance was achieved. During each step of the calculation, the contact topography was updated. The simulation intuitively reproduced the contact state of change from line to surface contact throughout the wear process. Reasonable agreements on the changes of the wear scar, achieved from experiments and numerical simulations, were obtained.
出处 《Friction》 SCIE CSCD 2019年第2期143-152,共10页 摩擦(英文版)
基金 financial support from the National Nature Science Foundation of China (No.51575190)
关键词 time VARYING WEAR SINGULAR INTEGRAL equation elastic deformation WEAR SCARS contact pressure time varying wear singular integral equation elastic deformation wear scars contact pressure
  • 相关文献

共引文献1

同被引文献51

引证文献1

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部