期刊文献+

类壁角端壁造型设计方法 被引量:1

Design Method for Fillet-like End Walls
下载PDF
导出
摘要 基于透平叶栅简化前缘模型的数值模拟结果,分析了原始模型端区的流动与传热特性,建立了一种新型类壁角端壁造型,对比评估了新型端壁模型、带前缘壁角模型与原始模型的流动与传热现象。结果表明:类壁角端壁造型的使用能够使端壁压力分布更加均匀;前缘滞止位置的低能流体在端壁压力的诱导下偏向主流,马蹄涡强度也随之减小;相比于带前缘壁角模型,新型端壁模型能够消除端壁与前缘壁角间的曲率间断线,疏导前缘两侧的堆积流体,抑制高强度角涡的产生,使壁面传热能力减弱。 Based on simulation results of the simplified leading-edge model for turbine blades, a new model was developed for the fillet-like end wall by analyzing the flow and heat transfer characteristics of the end wall in the original model, and subsequently the flow and heat transfer behaviors were comparatively studied among the new end wall model, the end wall model with leading-edge fillet and the original model. Results show that the use of fillet-like end wall would make the static pressure distribution more uniform;the low energy fluid in the leading edge stagnation zone would flow toward the mainstream under the guidance of end wall pressure, and the strength of the horseshoe vortex would drop accordingly. Compared with the model with leading-edge fillet, the use of the new end wall model could eliminate the discontinuous line of the curvature between the end wall and the fillet, lead the accumulative low energy fluid out of the corner region, inhibit the generation of high strength corner vortex and decrease the heat transfer on the leading edge.
作者 张旭阳 ZHANG Xuyang(School of Energy and Power Engineering, University of Shanghai for Science and Technology,Shanghai 200093 , China)
出处 《动力工程学报》 CAS CSCD 北大核心 2019年第5期345-352,共8页 Journal of Chinese Society of Power Engineering
关键词 端壁造型 前缘壁角 Kriging代理模型 端区 end wall design leading-edge fillet Kriging agent model end wall region
  • 相关文献

参考文献2

二级参考文献25

  • 1Sharma O P,Butler T L. Predictions of endwall losses and secondary flows in axial flow turbine cascades[J]. Journal of Turbomachinery, 1987,109(2) : 229-236.
  • 2Denton J D. The 1993 IGTI scholar lecture loss mecha- nisms in turbomaehines[J]. Journal of Turbomaehinery, 1993,115(4) :621 656.
  • 3El-Hak M G, Pollard A, Bonnet J. Flow control, fundamen- tals and practices [M]. Heidelberg, Germany: Springer Verlag, 1998 1-108.
  • 4Zess G A, Thole K A. Computational design and experi- mental evaluation of using a leading edge fillet on a gas turbine vane [J]. Journal of Turbomachinery, 2002, 124 (2) :167-175.
  • 5Lethander A T, Thole K A,Zess G, et al. Optimizing the vane-endwall junction to reduce adiabatic wall tempera- tures in a turbine vane passage[R]. ASME Paper GT2003- 38940,2003.
  • 6Gregory-Smith D,Bagshaw D, Ingram G, et al. Using pro files endwalls,blade lean leading edge extensions to mini- mise secondary flow [R]. ASME Paper GT2008-50811, 2008.
  • 7Turgut 0 H, Camel C. Experimental investigation and computational evaluation of contoured endwall and leading edge fillet configurations in a turbine NGV[R]. ASME Pa- per GT2012-69304,2012.
  • 8Miyoshi I, Higuchi S I,Kishibe T. Improving the perform ance of a high pressure gas turbine stage using a profiled endwall[R]. ASME Paper GT2013-95148,2013.
  • 9Langston L S. Secondary flows in axial turbines: a review [J]. Annals of the New York Academy of Sciences, 2001, 934(1) :11-26.
  • 10Bourke P. Modelling a tear drop[EB/OL]. [2013-07-24]. http ://paulbourke. net/geometry/teardrop/.

共引文献12

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部