期刊文献+

基于x-LMS的智能叶片风力机复合主动降载控制方法 被引量:2

A Compound Control Method for Active Load Alleviation of a Smart Blade Wind Turbine Based on x-LMS
下载PDF
导出
摘要 为研究大型风力机的主动降载控制方法,以NREL 5 MW参考风力机为研究对象,建立了具有尾缘襟翼的智能叶片风力机非定常气动模型,并分析其非定常气动性能。基于x-LMS分别对桨距角和尾缘襟翼角进行控制,提出将二者结合的复合主动降载控制方法,并分析了在不同风况下所提控制方法的控制效果。结果表明:所建模型可有效模拟出智能叶片风力机的非定常气动性能;所提控制方法可同时抑制高频与低频叶根挥舞弯矩波动,并显著降低叶片疲劳载荷,有利于风力机的稳定运行。 To study the control method for active load alleviation of large-scale wind turbines, taking the NREL 5 MW reference wind turbine as a research object, an unsteady aerodynamic model was established for the smart blade wind turbine with trailing edge flaps(TEFs), while its unsteady aerodynamic characteristics were analyzed. The pitch angle and TEF angle were controlled respectively based on x-LMS, and a compound control method of active load alleviation was proposed by combining the individual pitch control and TEF control, of which, the control effects were subsequently analyzed under different wind conditions. Results show that the model established can effectively simulate the unsteady aerodynamic characteristics of the smart blade wind turbine. The control method proposed can mitigate the fluctuation of high-frequency and low-frequency flapwise root moment and can significantly reduce the fatigue load of blades, thus achieving safety operation of the wind turbine.
作者 张文广 王奕枫 刘海鹏 刘瑞杰 ZHANG Wenguang;WANG Yifeng;LIU Haipeng;LIU Ruijie(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206 , China;School of Control and Computer Engineering, North China Electric Power University. Beijing 102206, China)
出处 《动力工程学报》 CAS CSCD 北大核心 2019年第5期409-417,共9页 Journal of Chinese Society of Power Engineering
基金 国家重点研发计划资助项目(2017YFB0602105) 北京市共建资助项目(GJ2017006) 中央高校基本科研业务费专项资金资助项目(2018ZD05)
关键词 风力机 非定常气动模型 尾缘襟翼 独立变桨距 x-LMS wind turbine unsteady aerodynamic model trailing edge flap individual variable-pitch control x-LMS
  • 相关文献

参考文献3

二级参考文献22

  • 1林勇刚,李伟,陈晓波,顾海港,叶杭冶.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(6):780-786. 被引量:62
  • 2李俊峰,高虎.中国风电发展报告2008[R].北京:中国环境科学出版社,2008.
  • 3Association World Wind Energy. World wind energy report 2008 [ R ]. Jeju Island, South Korea: World Wind Energy Association, 2009.
  • 4van Dam C P, Berg Dale E, Johnson S J. Active load control techniques for wind tuebines [ R ]. Albuquerque, New Mexico: Sandia National Laboratories, 2008.
  • 5Ribrant Johan. Reliability performance and maintenance- A survey of failures in wind power systems [D]. Stockholm, Sweden: KTH School of Electrical Engineering, 2006.
  • 6Musial W, Butterfield S, Ram B. Energy from offshore wind [R]. Houston, Texas: NREL, 2006.
  • 7Hammerum Keld. A fatigue approach to wind turbine control [ D ]. Kongens Lyngby : Technical University of Denmark, 2006.
  • 8Barlas A K. Progress in smart rotor research for wind turbines: Experimental and Computational Approaches to active aerodynamic control[ A ]. EAWE 3rd PhD Seminar 2007 [C], CENER, Spain: EAWE, 2007, 836-848.
  • 9Barlas T K, van Kuik G A M. State of the art and prospectives of smart rotor control for wind turbines [A]. The Second Conference on the Science of Making Torque from Wind[C], DTU, Denmark: IOP, 2007, 1742-1763.
  • 10Selvam Kausihan. Individual pitch control for large scale wind turbines[D]. Delft TU Delft, 2007.

共引文献23

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部