期刊文献+

基于蜂窝网格划分的指纹定位算法的改进 被引量:1

Improvement of fingerprint positioning algorithm based on cellular meshing
下载PDF
导出
摘要 针对传统的K近邻算法计算量大、定位实时性低的问题,提出一种基于蜂窝网格的改进方法。对收集的RSS采用高斯滤波处理,正确显示无线信号的波动特性;针对定位现场会出现不同楼层的情况,提出根据位置指纹内的MAC地址区别不同楼层指纹的方法;使用K-means算法对指纹库聚类,缩小指纹搜索空间,在二分法的投票机制下确定最终的定位区域。仿真结果表明,在缩小定位区域之后,在保证定位精度的前提下,大幅度缩短了定位时间,保证了定位的实时性。 Aiming at the problem that the traditional K-nearest neighbor algorithm has a large amount of computation and low real -time positioning, an improved method based on cellular grid was proposed. Gaussian filtering was applied to the collected RSS to correctly display the wave characteristics of wireless signals. According to the location of different floors, a method was proposed to distinguish the fingerprints of different floors according to the MAC address within the location fingerprint. K-means was used to cluster the fingerprint database, the fingerprint search space was narrowed down, and the final location area was determined under the voting mechanism of the dichotomy. Results of simulation experiment show that, after the positioning area is reduced, the positioning is greatly shortened on the premise of ensuring the positioning accuracy. Time guarantees real-time positioning.
作者 林涛 李鹏 王昊 LIN Tao;LI Peng;WANG Hao(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机工程与设计》 北大核心 2019年第6期1601-1605,1641,共6页 Computer Engineering and Design
基金 防爆设备检测服务云平台研发与产业示范基金项目(14ZCDZGX00818) 天津市自然科学基金重点基金项目(13jczdjc34400)
关键词 蜂窝网格 K-MEANS算法 高斯滤波 位置指纹定位 实时性 cellular grid K-means algorithm Gauss filter fingerprint location real-time
  • 相关文献

参考文献5

二级参考文献74

  • 1SARMA S, BROCK D, ASHTON K. The Networked Physical World [R]. White Paper MIT, MIT Auto-ID Center, 2001.
  • 2LIN Yuanguai. An Intelligent Monitoring System for Agriculture Based on Zigbee Wireless Sensor Network [J]. Advanced Materials Research, Manufacturing Science and Technology, 2011, Vols. 383- 399: 4358-4364.
  • 3LIN Yuanguai, XIE Haixia, et al. Design of Zigbee Gateway in Intelligent Monitoring System for Agriculture [C]. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer. IEEE Computer Society, 2011: 2213- 2216.
  • 4Tseng Y C,Ni S Y,Chen Y S,et al. The Broadcast storm problem in a mobile ad hoc network[ C]//Proceedings of the 5th Annum ACM/IEEE Int'l Conference on Mobile Computing and Networking. Netherlands : Kluwer Academic Publishers, 2002 : 153-167.
  • 5Ip N J H, Edwards S A. A processor extension for cycle-accurate real-time software [ C ]//Proceeding of the Embedded and Ubiquitous Computing. 5coul,2006:449-458.
  • 6Goldoni E,Savioli A,Risi M, et al. Experimental analysis of RSSI-based indoor localization with IEEE 802.15.4 [ C ]//Pro- ceedings of Wireless Conference ( EW), 2010 European. Lucca, 2010 : 71-77.
  • 7Bahl P, Padm anabhan V. Radar:an in-building RF-based user location and tracking system [ C ]//Proceedings of INFOCOM' 2000. Israel,2000 : 775-784.
  • 8Girod L, Estrin D. Robust range estmiation using acoustic and muhmiodal sensing [ C ]//Proceedings IEEE/RSJ Int'l Conf Intelligent Robots and Systems( IROS'01 ). Hawaii,2001 : 1 312-1 320.
  • 9Li X, Pahlavan K. Super-resolution TOA estimation with diversity for indoor geolocaton [ J ]. IEEE Transactions on Wireless Communications, 2004,3 ( 1 ) : 224- 234.
  • 10Ho K, Sun M. Passive source localization using time differences of arrival and gain ratios of arrival [ J ]. IEEE Transactions on Signal Processing, 2008,56 (2) : 464-477.

共引文献55

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部