期刊文献+

改进遗传规划的混凝土路面裂缝检测算法 被引量:10

Concrete surface cracks detecting algorithm based on improved genetic programming
下载PDF
导出
摘要 针对在光照复杂环境下裂缝检测困难的问题,提出改进遗传规划的混凝土表面裂缝检测算法,将训练集图像进行光照的归一化处理,消除光照影响,根据裂缝图像特征筛选出训练集,利用改进选择算子的遗传规划算法训练图像处理模型,使用图像处理模型对图像裂缝进行提取并去除块状干扰得到最终检测结果。仿真结果表明,改进选择算子能在保证裂缝检测精度的情况下,加速图像处理模型的训练时间,能够精确、快速、有效地检测出混凝土表面裂缝。 Aiming at the difficulty of crack detection in complex illumination environment, an improved genetic programming crack detection algorithm for concrete surface was proposed. The training set was normalized by illumination, so as to eliminate the illumination effect. The training set was filtered out according to the characteristics of the crack image, and the genetic programming algorithm of the improved selection operator was used to train the image processing model. The image processing mo- del was used to extract the image cracks and remove the block interference to get the final test result. Simulation results show that the improved selection operator can accelerate the training time of the image processing model. The algorithm proposed has strong robustness, and the real concrete surface crack can be detected accurately and effectively.
作者 瞿中 陈宇翔 QU Zhong;CHEN Yu-xiang(School of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机工程与设计》 北大核心 2019年第6期1660-1664,共5页 Computer Engineering and Design
基金 重庆市科委基础科学与前沿技术研究重点基金项目(cstc2015jcyjBX0090) 重庆市基础与前沿计划基金项目(cstc2014jcyjA40033、cstc2015jcyjA40034、cstc2014jcyjA10051)
关键词 裂缝检测 遗传规划 选择算子 块状干扰去除 归一化 crack detection genetic programming selection operator block interference removal normalization
  • 相关文献

参考文献2

二级参考文献10

  • 1Abdel-Qader I, Abudayyeh O, Kelly M E. Analysis of edge-de tection techniques for crack identification in bridges[J]. Journal of Computing in Civil Engineering, 2003,17(4) : 255-263.
  • 2Fujita Y, Hamamoto Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011,22 (2) : 245-254.
  • 3Rathod V R, Anand R S. A comparative study of different seg- mentation techniques for detection of flaws in NDE weld images [J]. Journal of Nondestructive Evaluation, 2012,31 ( 1 ) : 1-16.
  • 4Gunkel C, Stepper A, Mailer A C, et al. Micro crack detection with Dijkstra's shortest path algorithm[J]. Machine Vision and Applications, 2012,23 (3) :589-601.
  • 5Yamaguchi T, Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing[J]. Machine Vision and Applications, 2010,21 ( 5 ) : 797-809.
  • 6Landstrom A, Thurley M J. Morphology-based crack detection for steel slabs2J]. IEEE Journal of Selected Topics in Signal Processing,2012,6(7):866-875.
  • 7Jahanshahi M R, Masri S F. Adaptive vision-based crack detec- tion using 3D scene reconstruction for condition assessment of structures[J]. Automation in Construction, 2012,22 : 567-576.
  • 8朱平哲,黎蔚.基于主动生长的断裂裂缝块的连接方法[J].计算机应用,2011,31(12):3382-3384. 被引量:16
  • 9王平让,黄宏伟,薛亚东.基于图像局部网格特征的隧道衬砌裂缝自动识别[J].岩石力学与工程学报,2012,31(5):991-999. 被引量:54
  • 10程仁贵,刘书炘.基于边缘检测的影像多线自动测量算法[J].重庆理工大学学报(自然科学),2013,27(2):89-92. 被引量:5

共引文献27

同被引文献80

引证文献10

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部