期刊文献+

基于2DGabor的人脸识别改进算法 被引量:3

Improved face recognition algorithm based on 2DGabor
下载PDF
导出
摘要 为解决已有PCA人脸识别算法对人脸偏转和光线变化不具有鲁棒性以及易丢失人脸结构信息的不足,提出一种基于2DGabor的改进人脸识别算法。利用2DGabor提取人脸初始特征,生成Gabor图像;利用旋转不变一致LBP算子对Gabor图像进行特征提取,分块统计特征向量;通过2DPCA算法降低特征维度,建立特征脸,输入分类器,进行匹配识别。在VS2013+OpenCV下,选用ORL、YaleA、YaleB和CMU-PIE人脸库为实验数据集,实验结果表明,与已有算法相比,在面部偏转和光线变化情况下,该算法缩短了匹配时间,提高了识别率。 To solve some deficiencies of existing face recognition algorithms on PCA, such as their non-robust performance in the face rotation and lighting change, and lost facial structures, an improved face recognition algorithm based on 2DGabor was proposed. 2DGabor was used to extract initial facial features, and Gabor images were generated. The features of Gabor images were extracted using the rotation invariant uniform LBP operator, and eigenvectors were segmented into blocks. The 2DPCA algorithm was used to reduce the facial feature dimension, to establish the feature face, and to input the classifier for matching face recognition. Experiments were carried out on ORL, YaleA, YaleB and CMU-PIE database using OpenCV in VS2013. Experimental results show that the proposed algorithm can improve the recognition rate and shorten the matching time facing the face rotation and lighting change compared with existing face recognition algorithms.
作者 王敏琪 王焕宝 刘安琪 孙晶晶 刘华勇 WANG Min-qi;WANG Huan-bao;LIU An-qi;SUN Jing-jing;LIU Hua-yong(School of Electronic and Information Engineering,Anhui Jianzhu University,Hefei 230601,China;School of Mathematics and Physics,Anhui Jianzhu University,Hefei 230601,China)
出处 《计算机工程与设计》 北大核心 2019年第6期1724-1728,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61402010) 安徽高校自然科学研究重点基金项目(KJ2016A151、KJ2018A0518)
关键词 GABOR变换 局部二值模式 特征提取 分块统计 人脸识别 Gabor transform LBP feature extraction block statistics face recognition
  • 相关文献

参考文献8

二级参考文献48

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 3庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 4Klare B. Heterogeneous face recognition [D]. Lansing: Michigan State University, 2012.
  • 5Akgul T. Can an algorithm recognize montage portraits as human faces [J]. IEEE Signal Processing Magazine, 2011, 28(1): 160-158.
  • 6Klare B, Jain A. Matching forensic sketches and mug shots to apprehend criminals [J]. IEEE Computer, 2011,44(5): 94-96.
  • 7Klare B, Jain A. On a taxonomy of facial features [C]//Proceedings of IEEE International Conference on Biometrics Compendium Biometrics: Theory Applications and Systems. Washington DC: IEEE, 2010: 1-8. [DOI: 10.1109/BTAS.2010.5634533].
  • 8Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition [J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2006, 28(12): 2037-2041.
  • 9Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Transaction on Image Processing, 2010, 19(6): 1635-1650.
  • 10Meyers E, Wolf L. Using biologically inspired features for face processing [J]. Journal of Computer Vision, 2008, 76(1):93-104.

共引文献63

同被引文献24

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部