摘要
针对水文系统复杂性与非线性的特点,加入动量项因子对BP神经网络进行改进,加快收敛速度,将自然因素、人为因素、自然与人为混合因素分别作为输入因子,构建了大沽夹河天然径流量还原计算方案,用逐项还原法的结果验证对比选出最佳方案。结果表明:①经过改进的BP神经网络收敛速度明显加快,由平均的6 028次迭代优化到1 782次迭代;②以降雨量、蒸发量和实测径流量为输入因子的第三种方案模拟误差最小,适用于大沽夹河流域天然径流量还原计算。
Aiming at the characteristics of the complexity and nonlinear of hydrological system,the BP neural network model was improved by the introduction of momentum factor to accelerate the convergence rate,established three kinds of schemes based on different input factors which were natural factors,human factors and synthetic nature and human nature to restore natural runoff calculation in Dagujia River and selected the best scheme by comparison and analysis of successive reduction method.The results show that the improved BP neural network can accelerate the convergence rate and the iteration time is optimized from the average 6 028 to 1 782.Getting the third scheme which used the rainfall,evaporation and measured runoff as the input factors is the best scheme in the simulation error and it is suitable for the natural runoff reduction calculation in the Dagujia River basin.
作者
刘强
张道长
张居嘉
魏琛
林洪孝
王刚
LIU Qiang;ZHANG Daochang;ZHANG Jujia;WEI Chen;LIN Hongxiao;WANG Gang(Water Conservancy and Civil Engineering College,Shandong Agricultural University,Taian 271018,China;Yantai Hydrology Bureau,Yantai 264000,China)
出处
《人民黄河》
CAS
北大核心
2019年第6期6-9,共4页
Yellow River
基金
国家自然科学基金资助项目(41202174)
科技部国际科技合作与交流计划项目(2007DFB70200)
高等学校博士学科点专项科研基金资助项目(20123702120020)
关键词
动量项
BP神经网络
还原计算
天然径流量
大沽夹河
momentum factor
BP neural network
reduction calculation
natural runoff
Dagujia River