期刊文献+

基于聚类分析的网络舆情倾向性分析研究 被引量:4

Analysis of Tendentiousness of Internet Public Opinion Based on Cluster Analysis
下载PDF
导出
摘要 介绍了国内外网络舆情分析的理论研究、系统构建和关键技术研究现状,给出了基于聚类分析的网络舆情倾向性分析的距离模型和相关系数模型,提出了基于时间片的k中心点法聚类分析算法,给出了该算法实现网络舆情倾向性分析的流程;以论坛和微博作为实验数据抽取平台,按照时间片进行信息的随机抽取,验证了选择5个连续的时间片且针对不同的样本数的聚类分析结果,能有效反应出网络舆情演化的倾向性,降低了聚类的维数,增加了聚类的可靠性;验证了本文提出的模型能有效地提高舆情演化主题提取的查全率,较大幅度提高了时间效率,为网络舆情信息倾向性分析提供了有益的解决方案。 This paper introduced the theory of Internet public opinion analysis,the construction of department and current situation of key technologyresearchat home and abroad.The distance model and correlation coefficient model of Internet public opinion analysis based on cluster analysis were given.K-mediods method clustering algorithm based on time slice was proposed,and the process was given.Using forum and micro-blog as experimental data extraction platform,we verified the clustering results of 5 continuous time slices for different samples.K-mediods method clustering analysis can effectively reflect the tendency of Internet public opinion evolution,reduce the dimension of clustering,and increase the reliability of clustering.It is verified that the method can improve the recall rate and greatly improve the time efficiency.It provides a solution for the tendentiousness analysis of Internet public opinion.
作者 胡欣杰 路雨楠 路川 HU Xinjie;LU Yunan;LU Chuan(Space Engineering University,Beijing 101416,China;Columbia University,New York 10027,USA)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第5期115-118,共4页 Journal of Ordnance Equipment Engineering
关键词 网络舆情 聚类分析算法 时间片 倾向性分析 距离模型 internet public opinion clustering analysis algorithm time slice analysis of tendentiousness distance matrix
  • 相关文献

参考文献4

二级参考文献34

共引文献24

同被引文献63

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部