期刊文献+

WSNs中基于双层抑制数据冗余算法

Two-Level-Based Suppressing Data Redundancy in Wireless Sensor Networks
下载PDF
导出
摘要 针对无线传感网络的海量数据的处理问题,提出基于双层抑制数据冗余算法;在第一层,传感节点引用皮尔森相关算法压缩数据,减少数据量;在第二层,由融合节点引用K均值聚类算法消除邻居节点间的数据冗余,进行数据聚类,降低数据间的冗余;实验数据表明:提出的TSDR算法有效地降低数据冗余。 For the issue of analyzing the big data in Wireless Sensor Networks(WSNs),the two-level-based suppressing data redundancy(TSDR)algorithm was proposed.At the first level,the sensors use a data compressionmodel based on the Pearson coefficient in order to reducethe amount of data collected periodically in each sensor.The aim is to reduce the number of data.At the second level,the aggregator node had an objective to eliminate data redundancycollected by neighboring nodes by using an adapted version ofK-means clustering method.Simulation on real data sensorsshows the effectiveness of our technique in reducing the big datacollected in WSNs.
作者 赵梦龙 李斌 ZHAO Menglong;LI Bin(School of Information and Engineering,GuiZhou Vocational and Technology College,Guiyang 550023,China;Concord University College,Fujian Normal University,Fuzhou 350117,China)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第5期128-131,共4页 Journal of Ordnance Equipment Engineering
基金 福建省教育厅福建省中青年教师教育科研项目(JAT160669)
关键词 无线传感网络 数据冗余 数据压缩 皮尔森系数 K 均值算法 数据聚类 Wireless Sensor Network data redundancy data compression Pearson coefficient Kmeans algorithm data clustering
  • 相关文献

参考文献1

二级参考文献10

  • 1Zhang L Q, Zhou X B, Cheng Q. Landscape-3D: a Robust Localization Scheme for Sensor Networks over Complex 3D Terrains [DB/OL]. [2011-03-15]. http ://ieeexplore. ieee. org/xpl/articleDetails, isp?arnumber= 4116553.
  • 2Liang J L, Shao J, Xu Y, et al. Sensor Network Localization in Constrained 3-D Spaces [C]//Proc IEEE International Conference on Meehatronies and Automation. Luoyang: IEEE, 2006: 49-54.
  • 3Ou C H, Ssu K F. Sensor position Determination with Flying Anchors in Three-dimensional Wireless Sensor Networks [J]. IEEE Trans on Mobile Computing, 2008, 7(9) : 1084-1097.
  • 4Liu Lichuan, Manli E, Wang Zhigang. A 3D Self-positioning Method for Wireless Sensor Nodes Based on Linear FMCW and TFDA [C]//Proc of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio: IEEE, 2009: 2990-2995.
  • 5Chen Hongyang, Huang Pei, Martins M. Novel Centroid Localization Algorithm for Three-Dimensional Wireless Sensor Networks [DB/OL]. [2011-03-15]. http://www, cs. brown, edu/martins/lubs/Daoers/wicom 08-centroid. pdf.
  • 6Li Jian, Zhang Jianmin. A Weighted DV-Hop Localization Scheme for Wireless Sensor Networks[C]//Proe of the Eighth IEEE International Conference on Embedded Computing and IEEE International Conference on Scalable Computing and Communications. Dalian: IEEE, 2009: 269-272.
  • 7Yi Xiao, Liu Yu, Deng Lu. An Improved DV-Hop Positioning Algorithm With Modified Distance Error For Wireless Sensor Network [C]//2009 Second International Symposium on Knowledge Acquisition and Modeling. Wuhan: IEEE Computer Society, 2009: 216-218.
  • 8刘玉恒,蒲菊华,赫阳,熊璋.无线传感器网络三维自身定位方法[J].北京航空航天大学学报,2008,34(6):647-651. 被引量:29
  • 9戴桂兰,赵冲冲,邱岩.一种基于球面坐标的无线传感器网络三维定位机制[J].电子学报,2008,36(7):1297-1303. 被引量:31
  • 10江禹生,冯砚毫.一种新的DV-Hop定位算法[J].传感技术学报,2010,23(12):1815-1819. 被引量:14

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部