期刊文献+

基于大数据的电视节目个性化推荐营销研究 被引量:2

Research on TV Personalized Recommendation Marketing Based on Big Data
下载PDF
导出
摘要 信息技术时代,数字电视网络运营商依托技术优势实现了电视节目点播与个性化推荐功能,基于大数据的电视节目个性化推荐是现阶段电视平台向消费者提供个性化视觉体验服务的重要营销方式之一。但在现实中,数据共享、信息处理及推荐算法等方面存在的不足制约了电视节目个性化推荐营销的推进。今后可通过以合作推进数据共享、提升数据处理能力、优化个性化推荐营销算法及内容等途径,推进电视节目个性化推荐营销。 Starting from the big data,this paper studies how to carry out personalized recommendation marketing on TV platform.Firstly,the paper introduces the changes brought about by the emergence of big data for the recommendation marketing of TV platform.Secondly,the technical means of personalized recommendation marketing are introduced.Then,according to the development of big data and technical means,this paper analyses the external data acquisition obstacles,information overload,recommendation algorithm defects and user preference solidification problems which may appear in the marketing mode.In view of these four problems,it gives four suggestions:promoting data sharing,improving data processing ability,optimizing the algorithm of personalized recommendation marketing,and optimizing personalized recommendation content.Suggestions,in order to help TV platform personalized recommendation marketing.
作者 粟皓 赵晖 SU Hao;ZHAO Hui(University of Chinese Academy of Scjiences,Beijing 100049,China;Xinjiang University,Urumqi 830046,China)
出处 《新疆财经大学学报》 2019年第2期41-46,共6页 Journal of Xinjiang University of Finance & Economics
基金 国家自然科学基金项目“基于多语言微博文本的新疆热点事件检测关键技术研究”(61561047)
关键词 大数据 电视平台 个性化推荐 big data TV platform personalized recommendation
  • 相关文献

参考文献4

二级参考文献79

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.

共引文献608

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部