摘要
针对基于深度学习的语音信号去噪方法存在难于收敛、性能不足的问题,本文提出了基于环状生成对抗网络的深度语音信号去噪方法,设计了新型的环状生成对抗语义去噪网络。通过40余种不同噪声语音集的试验,结果表明所提方法在5种衡量标准下都明显改善了去噪性能。
Traditional deep learning based audio denoising methods are difficult to convergence and their performances are insufficient to practical applications.This paper proposes a new audio denoising algorithms by CycleGAN,and design a new audio denoising network.By verifying the proposed method on 40 different types of audio noises,the experimental results demonstrate that the proposed method outperforms the existing methods obviously on five evaluation metrics.
作者
韩斌
郝小龙
樊强
彭启伟
薛依铭
HAN Bin;HAO Xiao-long;FAN Qiang;PENG Qi-wei;XUE Yi-ming(NARI Group Corporation,Nanjing 211100,China)
出处
《电子设计工程》
2019年第12期163-167,共5页
Electronic Design Engineering
关键词
语音降噪
深度学习
环状生成对抗网络
信号处理
audio denoising
deep learning
cycle generative adversarial networks
signal processing